بهینه ‏سازی سیاست‌های زیست ‏محیطی بخش زراعت کشاورزی ایران مبتنی بر رهیافت بهینه ‏سازی چندهدفه دوسطحی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 دانشیارگروه اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 استاد گروه اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در طول سه دهه اخیر، با توجه به رشد جمعیت، رشد اقتصادی و مصرف انرژی، خطرات و آسیب‌های ­زیست‌محیطی بیشتر نمایان شده است. ایران کشوری رو به رشد است و یکی از مصادیق الگوی رشد با فشار بر منابع طبیعی محسوب می­ شود؛ از این‏رو، بررسی اثرات زیست ‏محیطی مصرف منابع طبیعی و توسعه در ایران بسیار حائز اهمیت است. هدف پژوهش حاضر بهینه ­یابی سیاست­های کشاورزی با محوریت حفظ محیط زیست و بهبود بهره ­وری اقتصادی از طریق ساخت یک مدل بهینه ‏سازی چندهدفه دوسطحی و ارزیابی مجموعه جواب‏های بهینة به‏ دست آمده از دو نوع ابزار سیاستی «افزایش قیمت نهاده آب» و «برقراری مالیات بر کود مصرفی» بود. پژوهش به‏ صورت مطالعه موردی در بخش زراعت کشاورزی دشت خمین و طی سال زراعی 95-1394 صورت گرفت. مجموعه جواب‏های بهینه پارتو به دست آمده از ارزیابی سیاست افزایش قیمت نهاده آب و برقراری مالیات بر کود شیمیایی نشان ‏داد که در الگوهای کشت شامل محصولات لوبیا و پیاز، بهره‏ وری بالاتر و مصرف کود کمتر از سایر الگوهای کشت بهینه است؛ همچنین، تغییر الگوی کشت به محصولات پیشنهادی افزایش بهره‏ وری مصرف آب به میزان 162 درصد و کاهش 29 درصدی میانگین کود مصرفی و نیز کاهش 33 درصدی فرسایش خاک را موجب می­ شود. با توجه به نتایج به‌دست‌آمده، شایسته است با انتخاب ابزار سیاستی افزایش قیمت نهاده آب، از محصولات لوبیا و پیاز در ترکیب الگوی کشت کشاورزان بهره گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing the Environmental Policies of Iran's Agricultural Cropping Based on Multi-Objective Bi-Level Optimisation Model Approach

نویسندگان [English]

  • M. Jafari 1
  • J. Shahraki 2
  • A. Akbari 3
1 Ph. D. Student in Agricultural Economics, University of Sistan and Baluchestan, Zahedan, Iran
2 Associate Professor, Department of Agricultural Economics, University of Sistan and Baluchestan, Zahedan, Iran
3 Professor, Department of Agricultural Economics, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Over the past three decades, due to population growth, economic growth and energy consumption, environmental hazards have increased. Iran is a growing country and one of the examples of growth patterns with pressure on natural resources. Therefore, it is very important to study the environmental impacts of natural resources consumption and development in Iran. This study aimed at optimizing the agricultural policies with the orientation of environment conservation and improved economic productivity through building a two-level multi-objective optimization model as well as evaluating the optimal set of solutions obtained from two policy tools of 'increase in price of inputs' and 'introduction of taxes on fertilizer consumption'. This research was conducted as a case study in agricultural sector of Khomein Plain in Iran and during the 2015-2016 cropping year. The 'Pareto-optimal' set of answers obtained from the evaluation of the concerned policies showed that cultivars including beans and onions resulted in higher yields and lower fertilizer consumption than the other optimal cultivar patterns. Also, changing the cropping pattern to the proposed products would lead to an increase in water use productivity by 162 percent and a 29 percent reduction in the average consumed fertilizer while reducing the soil erosion by 33 percent. Given the study results, the bean and onion products are recommended to be used in the composition of farmers' cultivation pattern.

کلیدواژه‌ها [English]

  • : Multi-Objective Bi-Level Optimization
  • Environmental Policy
  • Crop Production
  • Khomein (Plain)
  1. Abedi-Sarvestani, A. and Shahvali, M. (2012). Environmental ethics: toward an Islamic perspective. American-Eurasian J. Agric. & Environ. Sci., 3(4): 609-617.
  2. Arfini, F., Donati, M., Zuppiroli, M. and Paris, Q. (2011). Exposit evaluation of set-aside using Symmetric Positive Equilibrium Problem. EAAE Proc., 89th Symposium of the European Association of Agricultural Economists, Parma,Italy.
  3. Bard, J.F. (1996). Solution algorithms for the government-agriculture bilevel programming model. Progress Report, Prepared for Institut National de la Recherche Agronomique (INRA), Thivernal-Grignon, France by Department of Mechanical Engineering, University of Texas, Austin.
  4. Bellman, R. (2013). Dynamic programming. Courier Corporation.
  5. Candler, W. and Norton, R. (1977). Multi-level programming and development policy. Washington DC: World Bank.
  6. Candler, W., Fortunyamat, J. and Mccarl, B. (1981). The potential role of multilevel programming in agricultural economics. American Journal of Agricultural Economics, 3(63): 521-531.
  7. Colson, B., Marcotte, P. and Savard, G. (2019). A trust-region method for nonlinear bilevel programming: algorithm and computational experience. Computational Optimization and Applications, 3(30): 211-227.
  8. Di, H.J. and Cameron, K.C. (2009). Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64(3): 237-256.
  9. European Commission (2012). Rural development in the EU. Statistical and Economic Information Report 2012. European Commission: Directorate-General for Agriculture and Rural Development.
  10. Falconer, K. and Hodge, I. (2014). Using economic incentives for pesticide usage reductions: responsiveness to input taxation and agricultural systems. Agricultural Systems, 3(63): 175-194.
  11. Giampietro, M. (2014). Multi-scale integrated analysis of agroecosystems. Boca Raton, Florida: CRC Press.
  12. Goldberg, D. E., Deb, K., & Korb, B. (1999). Don't worry, be messy. R. K. Belew & L. B. Booker, eds., Morgan Kaufmann Publishers, University of California, San Diego, pp. 24-30.
  13. Harvey, D.R. (2003). Agri-environmental relationships and multi-functionality: further considerations. The World Economy, 26: 705-725.
  14. Howitt, R.E. (1995). Positive mathematical programming. American Journal of Agricultural Economics, 2(77): 329-342.
  15. Hwang, C.L., Masud, A.S.N., Paidy, S.R. and Yoon, K. (1979). Multiple objective decision making - methods and applications: a state-of-the-art survey. Berlin: Springer-Verlag.
  16. Jaraitė, J. and Kažukauskas, A. (2012). The effect of mandatory agro environmental policy on farm fertiliser and pesticide expenditure. Agricultural Economics, 63(3): 656-676.
  17. Kim, C. and Kim, Y. (2016). Economic effects of eco-taxation on chemical fertilizers. Korean Journal of Agricultural Economics, 3(42): 25-43.
  18. Koundouri, P., Laukkanen, M., Myyrä, S. and Nauges, C. (2009). The effects of EU agricultural policy changes on farmers’ risk attitudes. European Review of Agricultural Economics, 36(1): 53-57.
  19. Mavrotas, G. (2007). Generation of efficient solutions in Multiobjective Mathematical Programming problems using GAMS: effective implementation of the ε-constraint method. Lecturer, Laboratory of Industrial and Energy Economics, School of Chemical Engineering. National Technical University of Athens.
  20. Morgan, R.P.C. (1995). Soil erosion and conservation. London: Longman Group.
  21. Mousavi, S., Farajzadeh, Z. and Taheri, F. (2015). Study of economic and environmental consequences of eliminating chemical and pesticides subsidy using general equilibrium analysis. Agricultural Economics and Development, 22(88): 171-205. (Persian)
  22. Neshat, A., Ahmadian, M., Khalilian, S. and Vakilpour, M. (2017). Determining the optimal economic use of environmental pollutant chemical inputs in irrigated wheat production of Varamin Plain. Agricultural Economics and Development, 24(95): 123-145. (Persian)
  23. Norton, R.D. and Schiefer, G.W. (1980). Agricultural sector programming models: a review of alternative approaches. European Review of Agricultural Economics, 7(9): 229264. Also, available at https://doi.org/10.1093/erae/7.3.229.
  24. O’Callaghan, J.R. (1996). Land use : the interaction of economics, ecology and hydrology. New York City: Springer.
  25. Oduguwa, V. and Roy, R. (2010). Bi-level optimisation using genetic algorithm 2002. IEEE International Conference on Artificial Intelligence Systems, Proceedings pp. 322-327.
  26. OECD (1999). Environmental indicators for agriculture; issues and design. Paris: OECD Publications Service.
  27. Onal, H., Darmawan, D.H. and Johnson, S.H. (1995). A multilevel analysis of agricultural credit distribution in East Java, Indonesia. Computers and Operations Research, 2(22): 227-236.
  28. Pacini, C., Wossink, A., Giesen, G. and Huirne, R. (2004), Ecological-economic modelling to support multi-objective policy making: a farming systems approach implemented for Tuscany. Agriculture, Ecosystems & Environment, 3(102): 349-364.
  29. Paris, Q. (2015). Positive mathematical programming with generalized risk: a revision. UC Davis Department of Agricultural and Resource Economics Working Paper No. 15-002. Available at SSRN: https://ssrn.com/abstract=2594573 or http://dx.doi.org/10.2139/ssrn.2594573.
  30. Shahraki, J., Akbari, A. and Jafari, M. (2017). Effects of eliminating the water subsidy on production of ornamental flowers. Agricultural Economics and Development, 24(95): 147-165. (Persian)
  31. Sheikhzeinoddin, A., Esmaeili, A. and Zibaei, M. (2016). Management of water and fertilizer consumption using bio-economic approach: a case study of irrigation and drainage of Doroudzan. Agricultural Economics and Development, 24(93): 27-47. (Persian)
  32. Steuer, R.E. (1986). Multiple criteria optimization.theory, computation and application. 2nd Edition, Krieger, Malabar FL.
  33. Tiwari, D.N., Loof, R. and Paudyal, G.N. (1999). Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agricultural Systems, (60): 99-112.
  34. Ververidis, K.A. (2016). A multi-objective bi-level optimisation model for agricultural policy in Scotland. PhD Thesis Submitted to University of Edinburgh..
  35. Vicente, L.N. and Calamai, P.H. (1994). Bi-level and multilevel programming: a bibliography review. Global Optimization, 3(5): 291-306.
  36. Wischmeier, W.C. and Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook 537, U.S. Gov. Print. Office, Washington, DC.
  37. Zamanian, G., Jafari, M. and kalaee, A. (2013). Effects of environmental stress and increase in the price of agricultural inputs on crop pattern in Khomein Plain. Agricultural Economics and Development, 22(87): 89-110. (Persian)
  38. Zander, P. and Kächele, H. (1999). Modelling multiple objectives of land use for sustainable development. Agricultural Systems, 2(55): 311-325.