اقتصاد کشاورزی و توسعه، سال بیست و چهارم، شماره 82، تابستان 1392

پیش بینی صادقات غیردستی ایران
با استفاده از سیستم استنتاجی- تطبیقی فازی- عصبی (ANFIS)

امیر عضدی، حمید محمدی، محمد قاسمی

تاریخ دریافت: 22/6/91
تاریخ پذیرش: 22/6/91

چکیده
در این مطالعه مدل جدید استنتاجی- تطبیقی فازی- عصبی (ANFIS) معرفی و کارایی آن در پیش بینی سه افق زمانتی 2001 و 2 سال آتی صادقات غیردستی ایران که بخش عمده ای از آن را محققه‌ی کشاورزی تشکیل می‌دهد، با مدل ARIMA- به عنوان یک پیش‌بینی روش خطی پیش بینی اقتصاد سنجی- با استفاده از داده‌های دوره 1338-1372 مقایسه شد. نتایج معیارهای ارزیابی کارایی مدل‌ها نشان داد که داده‌های پیش بینی پیش بینی آزمون ساختارهای طراحی شده مدل ANFIS در مقایسه با داده‌های پیش بینی شده بخش خارجی از نمونه مدل ARIMA و از مطالعه پیش‌بینی با داده‌های واقعی درخوردار بوده و در نتیجه مدل ANFIS غیر خطی در پیش بینی صادقات غیردستی ایران و افقهای زمانتی مورد بروزرسانی، کارایی می‌باشد.

* و ** استادیار گروه اقتصاد کشاورزی دانشگاه زابل (نوبت‌نامه مسئول)
e-mail: hamidmohammadi1378@gmail.com
*** استادیار گروه اقتصاد کشاورزی دانشگاه زابل

153
اقتصادنگاری و توسعه – سال بیست و یکم، شماره ۲

طبقه بندی JEL: C22, C45, E47, F31

کلید واژه‌ها:

مدل استنتاجی- تطیفی فازی- عصبی (ANFIS)، مدل خود رگرسیون میانگین متحرک انباشته (ARIMA)

مقدمه

صدارت نفت خام به دلیل نوسانات قیمت این محصول در بازارهای جهانی، سبب نوسان در وضع تولید ناخالص ملی در آمد سرانه و سایر متغیرهای اقتصادی کشور می‌شود.

طبقه بندی جهانی ارزی ایران و صادرات نفت باید به این اقتصاد کشور نیز به طور کامل از روند صادرات نفت تبعیض نموده و با نوسانات آن دچار بحران شده است. از آنجاکه نفت عمده‌ترین کالای سیاسی، اقتصادی، تجاری و هم‌تیماری در سطح بین‌الملل قیمت آن را تحت تأثیر قرار می‌دهد، قیمت آن به عنوان یک متغیر برونا در اقتصاد کشور وارد شده و بسیاری از آسیب‌های ارزی و اقتصادی را به دنبال داشته است (رضایی، ۱۳۷۹). از طرف دیگر، چگونگی ایجاد نمایندگی و دنیای نفتی و وجود مشکلات ناشی از اقتصاد تک محصولی، سیاست‌گذاری‌هایی را در راستای افزایش صادرات غیرنفتی از جمله محصولات کشاورزی موجب شده است (طیب زاده، ۱۳۸۵). بر همین اساس ایران به دلیل توازن اقتصادی و رشد در عرصه صنعتی و صنعتی محصولات کشاورزی، رتبه‌های اولی را دارا می‌باشد.

بنابراین، توجه به کمیت و کیفیت تولید و صادرات محصولات کشاورزی ضروری است. اشتغال به دلیل کاربر بودن، باعث افزایش قیمت محصولات غذایی و ارزآوری شده و در نتیجه بررسی و پیش‌بینی صادرات غیرنفتی که به این محصولات کشاورزی تأثیر بیانگر دارد.
پیش بینی صادرات

یکی از مهم‌ترین اهداف ساخت مدل‌های اقتصادی، امر پیش بینی است. همچنین اغلب
پدیده‌هایی طبیعی رفتاری غیرخطی دارند که لازم تشخیص مناسب آنها استفاده از مدل‌های
غیرخطی است. در اکثر مطالعات از ابزار گرگیون خطری یا چند جمله‌ای، موانع متحرک
مدل‌های باکس و جکنیز، همان‌طور ساختارهای مدل‌های سری زمانی به منظور پیش بینی متفاوت
اقتصادی استفاده می‌شود. اما این مدل‌ها ضعف‌هایی دارند که به محقق اجازه نمی‌دهد تا عوامل
پیچیده و غیرخطی مؤثر بر پیش بینی را در نظر بگیرد. اخیراً به خویش ابتات شده که بسیاری از
مشاهدات سری‌های زمانی اقتصادی، غیر خطی بوده و تخمین مدل‌های خطی برای مسائل پیچیده
دبای واقعی همیشه رضایت بخش نیست. پیش بینی براساس مدل‌های غیرخطی اقتصادی مناسب
با محدودیت‌های بسیار زیادی همراه است. به عنوان مثال ممکن است اطلاعات در خصوص
متغیرهایی توضیحی که بر متغیر وابسته اثر می‌گذارند، وجود نداشته باشد. از سوی دیگر
پیش بینی متغیر وابسته ایشان با این‌طور متغیرهای توضیحی پیش بینی شود که در رخداد
پیش بینی متغیرهای توضیحی امری دشوارتر از متغیر وابسته است، در حالی که مدل‌های جدید
شبکه عصبی می‌توانند بهتری از مدل‌های خطی و غیرخطی اقتصادی مناسب باشند (Racine, 2001).
مدل‌های شبکه عصبی یک فرآیند توزیع موارد با ماهیت طبیعی بوده و
همچنین برگی آنها توانایی مدل‌سازی روابط غیرخطی و پیچیده بدون نیاز به فرضیات قبیل
از ماهیت ارتباطی است. به همین دلیل همیشه باشد (Haykin, 1994). لذا، در این مطالعه از مدل جدید
سیستم استنتاج فازی شبکه عصبی تطبیقی (ANFIS) در پیش بینی صادرات غیرنیتی ایران استفاده
و کارایی آن مدل ARIMA از عوامل رایجترین روش خلاصه پیش بینی مقایسه می‌شود.
اخیراً مطالعاتی در زمینه کاربرد این مدل‌ها در خواص اقتصاد صورت گرفته که در ادامه
به تعدادی از آنها اشاره می‌شود.

فهیسی فرد و همکارانش (2012) در مطالعه ای به کاربرد مدل
خودرگرگیون شبکه مصنوعی با متغیرهای پرتویا (NNARX) در پیش بینی ارزش افزوده بخش

1. Adaptive Neuro-Fuzzy Inference System
2. Auto-Regressive Integrated Moving Average
3. Neural Network Auto-Regressive Model with EXogenous Inputs

155
اقتصادگزارشی و توسعه - سال پیست و بیکم، شماره 82

کشاورزی ایران در دانشجویان، به این منظور ابتدا به تجربیات اقتصاد و راهبردهای اقتصادی کشاورزی ایران با استفاده از مدل کتاب-داگلاس و رهبرای خود رگرسیون با وجود های گسترده (ARDL) پرداخته و سپس با استفاده از معیارهای ارزیابی کارایی مدلها به مقایسه مدل NNARX و ARDL در پیش بینی ارزش افزوده بخش کشاورزی ایران پرداخته شد. نتایج برآورد تابع ارزش افزوده بخش کشاورزی ایران نشان داد که 1 درصد افزایش در نهایت های نپوری کارکردنی و افزایش، به ترتیب 12/36 و 2/03 درصد افزایش افزوده بخش کشاورزی ایران نشان داد که مدل NNARX و شبکه عصبی ARDL نسبت به مدل NNARX و شبکه عصبی ARDL نتایج مثبتی داشته است.

کارایی بیشتری در پیش بینی ارزش افزوده بخش کشاورزی ایران برخوردار می‌باشد. فهمی فرد و همکارانش (2009)، در مطالعه ای به بررسی کاربرد مدل فازی - عصبی ANFIS در پیش بینی بازاری نرخ ارز دلار، مدل مهاجرت و افزایش در مطالعه نتایج حاصل از آن را به مدل ANFIS، مطالعه آنان نشان داد که مدل ANFIS در مطالعه ای به بررسی اقتصادی مورد بررسی از کارایی بیشتری در مقایسه با مدل ARIMA خویش برخوردار می‌باشد.

آذری‌بانیانی و همکارانش (2007)، در مطالعه‌ای، مصرف انرژی سیستم (سیستم انرژی) در ایران با استفاده از مدل‌های خطی خویش و شبکه عصبی مصنوعی (ANN) تا سال 95 پیش بینی کردن و نشان دادن که مدل شبکه عصبی مصنوعی نسبت به مدل‌های خطی و غیرخطی اقتصادی سنگینی در دقت پیش‌بینی برخوردار می‌باشد.

فهمی فرد و همکارانش (2013)، در مطالعه ای به مقایسه توپان پیش‌بینی مدل عصبی ARIMA با مدل شبکه عصبی ANFIS و خود رگرسیونی ANFIS فازی در پیش بینی سری‌های زمینی پرداخته. به عنوان کاربرد تجربی فهمت نمایش برای همه افق زمانی به وسیله مدل‌های مذکور پیش بینی و از معیارهای ارزیابی کارایی جهت بررسی قدرت پیش بینی مدل‌ها استفاده کرد.

1. Auto-Regressive Distributed Lag
پیش‌بینی صادرات

شاد. به این منظور از داده‌های هفتگی دوره ۴: ۱۳۷۷- ۱: ۱۳۸۱ استفاده شد. نتایج نشان داد که
مدل ANFIS و مدل ARIMA در مقایسه با مدل ANFIS در همه افتخارات زمانی از کارایی بیشتری در پیش‌بینی می‌نمایند. تخمین مرگ برخوردار است.

مهی‌فرذ و همکارانش (۱۳۸۸) در مطالعه‌ای با استفاده از مدل شبکه عصبی- خوود
رگرسیونی با وردی‌های اینترزا (NNARX) به پیش‌بینی سه افتخار زمانی آنی قیمت خرده‌فروشی
برنگ، گونشو تخم مرغ و دانه مرغ برداختن و کارایی آن را با مدل ARIMA مقایسه کرده‌اند. به
این منظور از داده‌های هفتگی قیمت برخی از شرکت پشتیبانی اسپرم دام و فروش‌گاه رفاه
کل کشور (مربوط به دوره ۴: ۱۳۷۸) استفاده کرده‌اند. نتایج ارزیابی کارایی مدل‌ها نشان
داد که مدل خوود‌خیز شبکه عصبی- خوود رگرسیونی NNARX در پیش‌بینی قیمت خردت
فروش محصولات کشاورزی و افتخارات زمانی مورد بررسی، در مقایسه با مدل خنثی
کارایی می‌باشد.

اثنی‌عشیری (۱۳۸۶) مطالعه‌ای به منظور بررسی تاثیر سیاست‌های تولیدی و مالی بر اشتغال
بخش کشاورزی و پیش‌بینی آینده اشتغال با استفاده از روش‌های شبکه عصبی و خوود رگرسیون
برداری انجام دادند. نتایج مطالعه وی نشان داد که مدل شبکه عصبی در پیش‌بینی اشتغال، از
عملکردهای مثبتی برخوردار می‌باشد.

مرواری بر مطالعات پیش‌بینی نشان می‌دهد که مطالعه‌ای در خصوص پیش‌بینی صادرات
غیرننده در چارچوب روش مطالعه حاضر صورت نگرفته و از آنجا که از طریق پیش‌بینی
می‌ Nguyễn افتخارات اقتصادی با مدل‌های دقیق می‌توان سیاست‌گذاران و برنامه‌ریزی را در تصمیم‌گیری
های آتی بیاری رساند، لذا هدف اصلی این مطالعه پیش‌بینی صادرات غیرننده ایران با استفاده
از مدل جدید

روش تحقیق

مدل خوود‌خیز مباتین متحرک انبیشه (ARIMA)

به‌طور کلی این روش دارای ۴ مرحله شناسایی آزمایشی، تخمین، تشخیص دقت

برازش و پیش‌بینی می‌باشد (Box & Jenkins, ۱۹۷۰).

۱۵۷
اقتصادگزارشی و توسعه - سال بیست و یکم، شماره ٢٨

در این مطالعه مدل (ARIMA (p, d, q)) برای پیش‌بینی صادرات غیرنفتی ایران به صورت زیر تعریف می‌شود:

\[No_t = f(t) + \phi_1 No_{t-1} + \ldots + \phi_p No_{t-p} + e_t + \theta_1 e_{t-1} + \ldots + \theta_q e_{t-q} \] (١)

که در آن، \(No \) به ترتیب صادرات غیرنفتی در زمان \(t \)، وقفه خوردگی، وقفه میانگین متحرک (MA)، عامل میانگین متحرک (AR)، ضربی عامل خوردگی و ضربی عامل میانگین متحرک می‌باشد.

مدل استنتاجی - تطبیقی عصبی - فازی (ANFIS) یک شبکه پیش‌بینی چندلاسه می‌باشد که از الگوریتم‌های بادگیری شبکه عصبی و منطق فازی به متغیر تررسیم یک فضایی ورودی به یک فضایی خروجی استفاده می‌کند. تطبیقی سیستم عصبی، نشان داده است که در مدل کردن پدیده‌های پیچیده سبیار قدرتمند می‌باشد. مدل ANFIS قابلیت خوبی در آموزش، ساخت و طبقه‌بندی داده و همچنین دارای این مزیت است که اجازه استخراج قوانین فازی را از اطلاعات عددی یا دانش متخصص می‌دهد و به طور تطبیقی یک قاعده - بنیاد ساز و علاوه بر این می‌تواند تبدیل پیچیده هوشی بری به سیستم‌های فازی را تنظیم کند (Chaves et al., 2005).

این مدل که توسط یانگ در سال ۱۹۹۵ ارائه شد، اجازه می‌دهد سیستم‌های فازی در مباحث آموزش پارامترها، الگوریتم آموزش خطای پس از نشان انجام تطبیقی استفاده نمایند. TSK همچنین از یک ساختار ANFIS که به مجموعه‌ای از قواعد اگر- آنگاه فازی نوع (روش مستقیم) تشکیل گردیده است، می‌توان جهت مدل‌سازی و تغییر داده‌ها ورودی- خروجی استفاده کرد. تطبیقی معمولی از یک مستقل نشان‌گر، تعیین یک‌یک تابع \(f \) می‌باشد به‌طوری که تقیی‌بندی بتون به جای تابع اصلی \(f \) مورد استفاده قرار گیرد. در نتیجه پیش‌بینی

1. Adaptive Error Backpropagation Learning Algorithm.
2. Takagi-Sugeno-kang.
پیش بینی صادرات

خروجی \tilde{Y} به ازای ورودی $X = (x_1, x_2, x_3, \ldots, x_n)$ (پیشامدهای خروجی) حقیقی و قابل قاضی ی از نظر تغییرات شرایط نیست. سیستم فازی با مجموعاتی شامل N قاعده فازی، برای پیش بینی

صدارت \tilde{Y} صورت زیر می‌گذارد (Morgan, 1998):

$$f(x) = \sum_{i=1}^{N} \frac{\prod_{j=1}^{n} \mu_{A_i^{(j)}}(x_j)}{\sum_{i=1}^{N} \prod_{j=1}^{n} \mu_{A_i^{(j)}}(x_j)}$$

که در رابطه فوق A, μ, $\Pi_{i=1}^{n} \mu_{A_i^{(j)}}(x_j)$ و $\sum_{i=1}^{N} \prod_{j=1}^{n} \mu_{A_i^{(j)}}(x_j)$ به ترتیب عبارتند از: مقادیر صادرات گزارش نهایی A, μ, $\Pi_{i=1}^{n} \mu_{A_i^{(j)}}(x_j)$ و $\sum_{i=1}^{N} \prod_{j=1}^{n} \mu_{A_i^{(j)}}(x_j)$ مربوط به معیارهای مقادیر صادرات، مقادیر عضویت و ورودی x_j.

شکل 1. ساختار مدل ANFIS

- لایه اول: در این لایه هر گره A_i یک گره منطقی با نام G_i می‌باشد:

$$O_{i} = \mu_{A_i^{(j)}}(x) ; \quad \text{for } i=1,2 \text{ or }$$

- لایه دوم: در این لایه هر گره B_i یک گره منطقی با نام G_i می‌باشد:

$$O_{i} = \mu_{B_i^{(j)}}(y) ; \quad \text{for } i=3,4$$

که در آن x ورودی به گره A_i و y ورودی به گره B_i است. اعداد A_i, B_i ومجموعه‌ی عضویت \tilde{Y} می‌باشد. به‌ویژه دیگر A_i یک گره منطقی با نام G_i می‌باشد.

$A = (A_1, A_2, B, orB_1)$ می‌باشد. به‌ویژه دیگر A_i یک گره منطقی با نام G_i می‌باشد.
اقتصادکاروزی و توسعه - سال بیست و یکم، شماره 82

و مشخص کننده درجه ای است که در آن ورودی مورد نظر x یا y کمیت سنج A را پراورده می سازد. در اینجا تابع عضویت برای A می توانند هر تابع عضویت پارامتری مناسب مانند گوسین باشد:

\[\mu_A(x) = e^{-\frac{(x-c)^2}{2\sigma^2}} \]

که در آن c و \(\sigma \) مجموعه پارامترها می باشد و هنگامی که مقدار این پارامترها تغییر می کند، تابع گوسین نیز تغییر می کند و در نتیجه شکل‌های متفاوتی برای عضویت مجموعه فازی A به هم نمایش در می آید. همچنین در این لایه پارامترها به پارامترهای فرضی مقدم موسومند.

- لایه دوم: هر گره در این لایه، یک گره ثابت به نام P می باشد که خروجی آنها محصول تمام سیگنالهای ورودی می باشد:

\[O_{2,i} = w_i = \mu_{A_i}(x) \mu_{B_i}(y) \quad , \quad i = 1,2 \]

هر گره خروجی بیانگر شدت پاراگنگیکی برای یک کاناله می باشد. به طور کلی، هر دیگر به فازی را ایجاد می کند، می توانند به عنوان تابع گره در این لایه به کار رود.

- لایه سوم: هر گره در این لایه، یک گره ثابت به نام N می باشد و این گره، نسبت ایمین فاعذه شدت پاراگنگیکی را برای تمام فاعذه‌ها به صورت زیر محاسبه می کند:

\[O_{3,i} = \frac{w_i}{w_1 + w_2} \quad , \quad i = 1,2 \]

برای سادگی فرض می شود که خروجی‌های این لایه، شدت پاراگنگیکی هنای نرمال شده می باشد.

- لایه چهارم: هر گره این ایمین لایه، یک گره منطقی با تابع گره به صورت زیر می باشد:

\[O_{4,i} = \overline{w}_i f_i = \overline{w}_i (p_i x + q_i y + r_i) \]

1. Firing Strength
پیش بینی صادرات

که در آن \(\bar{w}_i \) یکی شدت بارانگیختگی نرمال شده از لاشه سوم می‌باشد و \(q_i \) و \(p_i \) مجموعه پارامترهای این گره می‌باشد. همچنین پارامترهای این لاشه به پارامترهای استنتاگی موسوماند.

- لاشه تشکیل شده گره این لاشه، یک گره ثابت به نام \(Z \) می‌باشد که تمامی خروجی‌ها را به عنوان مجموعه سیگنال‌های ورودی، به صورت زیر محاسبه می‌کنند:

\[
O_{s_i} = \sum_i \bar{w}_i f_i = \sum_i \sum_j \bar{w}_i f_i \frac{w}{w_j}
\]

همچنین در این مطالعه از الگوریتم آموزشی هیبریدی برای تعیین پارامترهای تابع عضویت سیستم‌های استیج‌های فازی از نوع سوگنوی \(\mu \) یک خروجی استفاده شده و به منظور آموزش پارامترهای تابع عضویت سیستم استیج‌های فازی مجموعه مغروض داده‌های ورودی- خروجی، ترکیب روش‌های تدادال مربعات و شبیه‌نلبی پس انتشار به کار گرفته می‌شود.

علاوه بر این، به منظور بررسی کارایی این مدل در پیش بینی صادرات غیرفیزی ایران برای افقام زمانی 1 و 4 سال آینده، بطری‌باز و قفه‌های، 2 و 3 داده‌های نرمال شده استفاده می‌شود.

در این مطالعه صادرات غیرفیزی به عنوان نابعی از معادل گذشته آن مدل‌سازی گردیده (Chen et al., 2001). داده‌های به کار رفته در این مطالعه شامل داده‌های سالانه صادرات غیرفیزی ایران مربوط به دوره 1387-1389 است که از یاگه اینترنتی بانک مرکزی جمهوری اسلامی ایران گردآوری شد. گرچه اجماع کلی در مورد چگونگی تقسیم داده‌ها در مدل‌های صنعتی - مصرفی و وجود ندارد، اما تمامی مطالعات بخش عده داده‌ها (معمولاً 70% یا 90% یا به آموزش و باقیمانده داده‌ها، به آموزش و مدل‌های اختصاصی ندهند (هایکین و همکاران، 2000) در این مطالعه پس از نرمال سازی داده‌ها به روش ANFIS به آموزش مدل و تصمیم مدل ARIMA و ANFIS به آموزش مدل اختصاصی داده می‌شود. همچنین به

1. Sugeno
2. Train
3. Test

161
اقتصاد‌کشاورزی و توسعه - صالحی بیست و یکم، شماره ۸۲

منظور مقایسه کارایی مدل‌های پیش بینی، از میزان‌های ارزیابی مدل‌ها به شرح جدول ۱ استفاده گردید.

جدول ۱: مهم‌ترین میزان‌های ارزیابی کارایی مدل‌ها

<table>
<thead>
<tr>
<th>فرمول</th>
<th>معیار</th>
</tr>
</thead>
</table>
| \[
| 1 - \frac{1}{\sum \frac{(\hat{y}_i - y_i)^2}{\sum y_i}} \]
| مجموع ضریب تغییر |
| AD = \frac{1}{n} \sum \left| \frac{y_i - \hat{y}_i}{y_i} \right| | میانگین قدر مطلق انحرافات |
| MSE = \frac{1}{n} \sum \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2 | ریشه میانگین مربع خطای |

Hykin, 1994

در روابط فوق، \(y_i \), \(\hat{y}_i \) و \(n \) به ترتیب مقدار هدف (مشاوه واقعی)، مقدار خروجی مدل و تعداد مشاهدات می‌باشند. واضح است که بهترین مقدار برای معیار \(R^2 \) برابر ۱ و برای سایر میزان‌ها برابر صفر می‌باشد. در مطالعه حاضر به منظور طراحی مدل ANFIS از نرم افزار Microfit و جهت تخمین مدل از نرم افزار ARIMA استفاده می‌گردد.

نتایج و بحث

نمودار ۱ روند صادرات کل، غیرنفتی و محصولات کشاورزی را نشان می‌دهد.

نمودار ۱: روند صادرات کل، غیرنفتی و محصولات کشاورزی
پیش بینی صادرات.....

مظاهر نمودار فوق و بر اساس آمار بانک مرکزی جمهوری اسلامی ایران، متوسط سهم صادرات محصولات کشاورزی از صادرات غیرنفتی معادل ۶۱/۶ درصد طی دوره ۱۹۷۴-۲۰۰۹ بوده است. همچنین صادرات غیرنفتی از نوسانات کمتری در مقایسه با صادرات کل کشور یافته است.

بخش عمده ای از آن را صادرات نفتی تشکیل می‌دهد، برخوردار می‌باشد.

ARIMA

پیش بینی های حاصل از مدل ARIMA به منظور بررسی کارایی مدل ARIMA در پیش بینی سری‌های زمانی مدکور، ابتدا ابستابی ی سری‌های زمانی با آزمون ریشه واحده دیکی فولر تعمیم یافته و به کارگیری معیار شوارتز- بیژن (که در تعیین تعداد وقت‌های صفره جویی می‌کند) بررسی شد. نتایج نشان داد که درجه همبستگی (d) برای سری‌های زمانی مورد بررسی برابر یک می‌باشد. سپس جهت تصویب مدل برای افتهای ۲ و ۳ سال آتی، درجه خود پرازشی (p) به ترتیب برابر ۲ و ۴ در نظر گرفته شده و برای هر یک از افتهای زمانی مدل‌ها از دستگاه فرایند MA (۱، ۲ و ۳) تخمین و از مدل دارای بیشترین مقدار شوارتز- بیژن برای تعیین درجه میانگین متغیر ک (q) استفاده شد. در ادامه ساختار تعیین شده در انجام پیش بینی های خارج از نمونه به کار رفته و نهایتاً این پیش بینی‌ها با داده‌های واقعی مقایسه شد. جدول ۲ خلاصه ای از این نتایج را نشان می‌دهد.
اقتصاد‌گزارشی و توسعتاتسال بیست و یکم، شماره ۸۲

جدول ۲. کارایی مدل ARIMA در پیش بینی سری زمانی صادرات غیرنفتی ایران

<table>
<thead>
<tr>
<th>نمایش هندسی پیش بینی صادرات غیرنفتی</th>
<th>ARIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>یک سال آینده ساختار (1, 0, 0)</td>
<td>RMSE</td>
</tr>
<tr>
<td></td>
<td>۰/۱۷۲</td>
</tr>
<tr>
<td>دو سال آینده ساختار (1, 1, 0)</td>
<td>RMSE</td>
</tr>
<tr>
<td></td>
<td>۰/۱۶۰</td>
</tr>
<tr>
<td>چهار سال آینده ساختار (1, 1, ۰)</td>
<td>RMSE</td>
</tr>
<tr>
<td></td>
<td>۰/۱۶۰</td>
</tr>
</tbody>
</table>

ملاحظه: پیش بینی انجام شده

این پیش بینی فوق تماشای هندسی پیش بینی صادرات غیرنفتی را که در جدول ۲ چسب جدول پیش‌بینی مقدار می‌باشد ارزیابی و ساختار مدل ARIMA برای افق‌های زمانی ۲ و ۴ سال آینده به‌صورت نشان می‌دهد. مقدار بیشتر مربوط به جدول مدل ARIMA و بینانگ کارایی بهبود می‌یابد. بنابراین با افزایش افق بیش بینی، کارایی این مدل کاهش می‌یابد.

ANFIS

پیش بینی های حاصل از مدل ANFIS

برای افق‌های مورد نظر، مدل‌های مختلفی با توابع عضویت gauss2, gauss1 و تعداد تابع عضویت (۲) و (۴) با شبکه عصبی انتشار گره‌های پیش‌بینی، تابع فعال سازی logsig, نرخ
پیش بینی صادرات

آموزش ۱۳۸۳ و ۱۰۰۰ تکرار طراحی شد. نهایتاً براي بررسی کارايتی این مدل، با استفاده از معیارهای ارزیابی مدلهای دادههای خروجی هر مدل با دادههای واقعی مقایسه گردید. جدول ۳ خلاصه‌ای از این نتایج را نشان می‌دهد.

جدول ۳. کارایی مدل ANFIS در پیش‌بینی سری زمانی صادرات غیرفتی ایران

<table>
<thead>
<tr>
<th>ANFIS</th>
<th>پیک سال آینده</th>
<th>باختر ۱۰۰۰-۳</th>
<th>گاوس</th>
<th>RMSE</th>
<th>MAD</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>۱۷۲</td>
<td>۱۵۲</td>
<td>۱۵۵۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>۱۷۲</td>
<td>۱۶۷</td>
<td>۱۵۶۲</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>۱۷۲</td>
<td>۱۶۸</td>
<td>۱۵۶۹</td>
<td></td>
</tr>
</tbody>
</table>

به طور مشابه، سمت راست جدول فوق نمایش هندسی پیش‌بینی صادرات غیرفتی ایران را که شامل Test و Train می‌باشد نشان می‌دهد. سمت چپ جدول بینانگ مقادیر معیارهای ارزیابی و ساختار مدل برای افکهای مورد نظر می‌باشد. ساختار شبکه‌های طراحی شده به روش‌های می‌باشد که گزاره اول از سمت چپ بینانگ نوع تابع عضویت و اعداد بعدی به ترتیب بینانگ تعداد تابع عضویت و تکرار می‌باشد. به طور مشابه، با افزایش افق پیش‌بینی، کارایی این مدل نیز در پیش‌بینی صادرات غیرفتی ایران کاهش می‌یابد. علاوه بر ۱۶۵
اقتصادگزارشی و توسه – سال بیست و یکم، شماره 82

از روند مشابهی همانند مدل ARIMA جهت پیش‌بینی صادرات غیرنفتی ANFIS برخوردار می‌باشد.

ANFIS مقاریه پیش‌بینی های به دست آمده از دو مدل ANFIS و ARIMA به منظور مقایسه کارایی مدل ANFIS و مدل ARIMA، معیارهای ارزیابی کارایی مدل‌های مختلف طراحی شده در هر دو مدل ANFIS و ARIMA بر مبنای ارزیابی کارایی مدل. زمانی تاسیم شد. جدول ۴ خلاصه‌ای از این نتایج را نشان می‌دهد.

جدول ۴. مقایسه عملکرد ANFIS و ARIMA در پیش‌بینی صادرات غیرنفتی ایران

<table>
<thead>
<tr>
<th>RMSE</th>
<th>MAD</th>
<th>R²</th>
<th>ساختار</th>
<th>افق زمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ANFIS</td>
<td>ARIMA</td>
</tr>
<tr>
<td>1 سال</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>0.856</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1995</td>
<td>0.875</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1996</td>
<td>0.905</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1998</td>
<td>0.905</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>2 سال</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>0.861</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>2002</td>
<td>0.890</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>2003</td>
<td>0.890</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>2008</td>
<td>0.890</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>3 سال</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>0.856</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1995</td>
<td>0.875</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1994</td>
<td>0.905</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>1998</td>
<td>0.905</td>
<td>0.01</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

شرط کاراگری بودن یک مدل نسبت به مدل دیگر، بر اساس از یک بودن کمیت حاصل از تقسیم R² و کوچک‌تر از یک بودن کمیت حاصل از تقسیم RMSE و MAD بر مدل ANFIS مدل دیگر می‌باشد. کمیت حاصل از تقسیم R² بر مدل ARIMA مدل دیگر را برای هر یک از این دو مدل ANFIS و ARIMA می‌باشد. همچنین کمیت حاصل از تقسیم MAD و RMSE بر مدل ANFIS برای هر یک از این دو مدل ANFIS و ARIMA می‌باشد. همچنین کمیت حاصل از تقسیم MAD و RMSE بر مدل ANFIS برای هر یک از این دو مدل ANFIS و ARIMA می‌باشد.

166
پیش بینی صادرات منبع‌های اقتصادی

حداقل برای ۹۹/۰۸ (مرز بر ساختار ۱۰۰-۳۲) می‌باشد. بنابراین، مدل ARIMA در پیش‌بینی صادرات گیرنده‌ای ایران در افزایش مورد بررسی پرتره دارد.

نتیجه‌گیری و پیشنهاد

توسعه کمی و کیفی تولید و صادرات محصولات کشاورزی ضمن ایجاد اشتغال به دلیل کاربر بودن، باعث تقویت بخش صنایع غذایی و ارزآوری پایدار در کشور خواهد شد. در نتیجه بررسی و پیش‌بینی صادرات گیرنده‌ای که بخش مهمی از آن را محصولات کشاورزی تشکیل می‌دهد، از اهمیت زیادی برخوردار است. لذا در این مطالعه کارایی مدل‌های عصبی- فازی ANFIS و خودرگسیونی ARIMA در پیش‌بینی صادرات گیرنده‌ای ایران برای سه افق زمانی ۲ و ۴ سال آینده، با استفاده از مهترین معیارهای ارزیابی مدل‌ها و داده‌های سالانه صادرات گیرنده‌ای ایران مربوط به دوره ۱۳۸۷-۷۸ مقایسه شد. بر این اساس مهمترین نتایج حاصله عبارتند: ۱. بر مدل روند مشابهی را برای صادرات گیرنده‌ای ایران پیش‌بینی می‌کند. ۲. مدل ANFIS نسبت به مدل ARIMA از ایجاد بیشتری در پیش‌بینی صادرات گیرنده‌ای ایران در افزایش زمانی مورد بررسی برخوردار می‌باشد.

از آنجا که یکی از مهم‌ترین اهداف مطالعات اقتصادی، پیش‌بینی متغیرهای اقتصادی بوده و نتایج تحقق کارایی پیشرفت‌های شیبک عصبی را در مقایسه با مدل جهت پیش‌بینی سیر‌های زمانی تأیید می‌کند، پیش‌بینی شده مایل به سطح آماری بهبود و توسعه مدل‌های نوین بیش بهتری کاربردی کردن آنها به منظور پایداری رسانیدن به تصمیم‌گیران حویزه‌های مختلف اقتصاد پردازند تا به ویژه تصمیم‌گیران در بخش کشاورزی با در اختیار داشتن اطلاعات کمکی و دقیق در این پاره بتوانند با ایجاد مدیریت یکپارچه تولید محصولات کشاورزی، ضمن تأمین مواد غذایی به هنگام افزایش تقاضا، امکان صادرات این محصولات ارزآوری را فراهم آورند.

۱۶۷
اصطحاب‌گزارشی و توسعه – سال بیست و یکم، شماره ۸۲

منابع

1. طیب زاده، ع. ۱۳۸۵. تأثیر سیاست‌های پولی و مالی بر اشتغال بخش کشاورزی ایران.
پایان‌نامه کارشناسی ارشد گروه اقتصاد کشاورزی. دانشگاه زابل.
2. رضایی صمیمی، ر. ۱۳۷۹. بررسی عوامل مؤثر بر صادرات پست ایران. پایان‌نامه کارشناسی
ارشد دانشگاه تربیت مدرس
3. طیب زاده، ع. ۱۳۸۵. نگاه اجمالی به عملکرد صادرات غیر نفتی ایران، گروه پژوهشی
بررسی متغیرهای کلان. پایگاه اینترنتی توسعه صادرات ایران.
4. فهمی، فرد، س. م. کیخا، اع. و سالاری‌پور، م. ۱۳۸۸. پیش بینی قیمت محصولات منتخب
کشاورزی ایران با روش تلفیقی شبکه عصبی - خودگرایی‌نامه و روش‌های
5. فهمی، فرد، س. م. سالاری‌پور، م. صبزی، م. ۱۳۸۰. مقایسه نتایج پیش‌بینی مدل عصبی-
فازی (ANFIS) با مدل شبکه عصبی ANNI و خودگرایی‌نامه (مطالعه موردی)

