رتبه بندی شهرستان های استان کرمان به‏ منظور دریافت اعتبارات کشاورزی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بخش اقتصاد کشاورزی، دانشکده کشاورزی دانشگاه شهید باهنر کرمان

2 استاد بخش اقتصاد کشاورزی، دانشکده کشاورزی دانشگاه شهید باهنر کرمان

3 دانشیار بخش ریاضی کاربردی، دانشکده ریاضی دانشگاه شهید باهنر کرما

4 استادیار بخش اقتصاد کشاورزی، دانشکده کشاورزی دانشگاه شهید باهنر کرمان

5 استادیاربخش مدیریت، دانشکده مدیریت دانشگاه تهران

چکیده

بررسی‌های انجام شده نشان می­دهد که در استان کرمان توزیع اعتبارات کشاورزی از الگوی مشخصی پیروی نمی­کند. هدف این پژوهش پیدا کردن شاخص­هایی جهت توزیع اعتبارات کشاورزی در استان کرمان بوده است. برای تصمیم­گیری نهایی از اطلاعات پرسش‌نامه­ای وآمارهای رسمی و از روش FAHP و TOPSIS برای توزیع اعتبارات کشاورزی استفاده شد. نتایج تحقیق نشان داد در شرایط موجود شهرستان­های کرمان، رفسنجان و شهر بابک به ترتیب با ضریب نزدیکی 80/0، 291/0و 290/0 در رتبه­های اول تا سوم و شهرستان­های زرند و سیرجان در اولویت­های آخر دریافت اعتبارات کشاورزی قرار دارند. با توجه به شاخص­های 17گانه و محاسبات تحقیق باید شهرستان­های بم، کرمان و بافت به ترتیب با ضریب نزدیکی 52/0 ، 51/0 و 24/0 در اولویت‏های اول تا سوم قرار گیرند. همچنین برنامه ساماندهی اراضی کشاورزی و حفاظت آب و خاک با ضریب 635/0 دارای بالاترین اولویت دریافت اعتباری است. در پایان توصیه می­شود برای توزیع اعتبارات کشاورزی در استان کرمان به برنامه ساماندهی اراضی کشاورزی، حفاظت آب و خاک و شهرستان‌های اولویت‌دار سیاست برنامه‌ای یعنی شهرستان­های بم، کرمان و بافت توجه شود.

کلیدواژه‌ها


عنوان مقاله [English]

Ranking the Counties of Kerman Province of Iran to Receive Agricultural Credits

نویسندگان [English]

  • S. Shamsadini 1
  • H. MehrabiBoshrabadi 2
  • M. A. yaghoobi 3
  • S. Nabieian 4
  • M. R. pourebrahimi 5
1 PhD Student in Agricultural Economics, Faculty of Agriculture, Sh. Bahonar University of Kerman, Iran
2 Professor of Agricultural Economics Department, Sh. Bahonar University of Kerman, Iran
3 Associate Professor of Applied Mathematics Department, Faculty of Mathematics, Sh. Bahonar University of Kerman, Iran
4 Assistant Professor of Agricultural Economics Department, Sh. Bahonar University of Kerman, Iran
5 Assistant Professor of Management Department, Faculty of Management, University of Tehran. Iran
چکیده [English]

Studies show no clear pattern of credit distribution in provinces of Iran. This study aimed at identifying the criteria for the allocation of agricultural credits in Kerman province. To make final decisions, the questionnaire information and official statistics were used in FAHP and TOPSIS methods, for the first time, for optimal allocation of agricultural credits. The study results showed that in the present condition, Kerman, Rafsanjan, and Shahr-e Babak Counties with almost 0.80, 0.291 and 0.290 were placed in the first to third ranks, respectively; and Zarand and Sirjan were the last ranks in receiving the agricultural credits. According to the analysis of 17 indicators, Bam, Kerman and Baft Counties with about 052, 0.51 and 0.24, were placed in the first to third ranks. The study results also showed that the status quo Chapters of agricultural land organization program, conservation of soil and water with coefficient of 0.635 had the highest priority of credit distribution. In the end, for the distribution of agricultural credits in Kerman province, giving attention to the organization of the water resources and prioritized Counties of Bam, Kerman and Baft through the concerned policies was recommended.

کلیدواژه‌ها [English]

  • Agricultural Credit
  • Fuzzy Analytic Hierarchy Process
  • TOPSIS
  • Kerman (Province)
  1. Asgharpour, M. J. (1999). Multi-criteria decision making. Tehran: Publishing Publications. (Persian)
  2. Azar, A. (1995). Designing a math model for cost planning in Governmental Organizations; Definite and Fuzzy Approach. Ph.D., Tehran: University of Tehran, by Mirmohdi Seyed Esfahani. (Persian)
  3. Azar, A. and Momeni, M. (2013). Statistics and its use in management. Tehran: study organization and designing university of liberal arts books (post). (Persian)
  4. Azar, A. and  Rajab Zadeh, A. (2002). Applicable decision-making of the MADM approach. Tehran: Negah Danesh. (Persian)
  5. Azar, A. and Sayed Esfahani, M. (1995). Deterministic mathematical approach in budgeting. Journal of Management Knowledge, No. 31 - 32: 10-19.
  6. Bradley, S.P., Hax, A.C. and Magnanti, T.L. (1977). Applied mathematical programming. Boston: Addison-Wesley.
  7. Carrera, J.A., Seren, M.J.F. and Manzano, B. (2009). Macroeconomic effects of the regional allocation of public capital formation. Regional Science and Urban Economics, 39 (5):563-574.
  8. Chang, D. Y. (1992). Extent analysis and synthetic decision, optimization techniques and applications. World Scientific, Singapore, 1: 352.
  9. Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 34(3): 2210-2220
  10.  Charnes, A. and Cooper, W.W. (1971). Studies in mathematical and managerial economics. North-Holland Publishing Company: 166-180.
  11.  Fozzard, A. (2001). The basic budgeting problem: approaches to resource allocation in the public sector and their implications for pro-poor budgeting. London: Overseas Development Institute.
  12.  Ghasemi, M. R., Arbabiyan, S., Moayani, S. and Salimi, B. (2015). Acquisition of investment assets in the distribution of funds between the provinces of Iran (2000-2001). Journal of Planning and Budgeting, 20 (1): 66-37. (Persian)
  13.  Harris, F.W. (1913) How many parts to make at once, Factory. The Magazine of Management, 10(2): 135– 136.
  14.  Hwang, C. L. and Yoon, K. (1981). Multiple attributes decision making methods and application. Springer, Berlin Heidelberg.
  15.  Intriligator, M. D. (2002). Mathematical optimization and economic theory. Society for Industrial and Applied Mathematics.
  16.  Jihad-e-Agriculture Organization of Kerman Province. (2014). (Persian)
  17.  Kerman Governor. (2017). Available at: http://gov.kr.ir (Persian)
  18.  Key, V. O. (1940). The lack of a budget theory. American Political Science Review, 34(6): 1137-1144.
  19.  Lawler, J.S., Lai, J. S., Monteen, L.D., Patton, J.B. and Rizy D.T. (1989). Impact of automation on the reliability of the Athens Utilities Board's distribution system. IEEE Transactions on Power Delivery, 4(1): 770-778.
  20.  Luenberger, D. G. (2003). Linear and Nonlinear Programming. Boston, MA, United States: Kluwer Academic Publishers.
  21.  Mas-Colell, A., Whinston, M. and Green, J. (1995. ( Microeconomic theory. Oxford: Oxford University Press.
  22.  Mehregan, M. (2005). Operational research (linear programming and its applications). Tehran: Publication of University Books. (Persian)
  23.  Najafi, S. (2011). Designing a budget-based math model in the public sector: A sustainable approach. Master's Thesis. Industrial Engineering, Faculty of Engineering, Shahed University. (Persian)
  24.  Panahi Golestan, S. and Nakhaii, I. (2015). Ranking cities of Ardabil province in order to distribute the current credit ratings by using multiple criteria decision-making approaches. The Third International Conference on Management, Economics and Accounting. (Persian)
  25.  Saaty, T. (1980). The analytical hierarchy process. New York, McGraw Hill.
  26.  Saaty, T.L. (1982). Decision making for leaders; the analytical hierarchy process for decisions in a complex world, Belmont, CA: Wadsworth. Translated to French, Indonesian, Spanish, Korean, Arabic, Persian, and Thai, Latest Edition, Revised, (2000), Pittsburgh: RWS Publications.
  27.  Shim, J.P. and Lee, M.S. (1984). Zero-based Budgeting: dealing with conflicting objective. Long Range Planning, 17(5).
  28.  Van Laarhoven, P.J.M. and Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11:229-241
  29.  Yoon, K. P. and Hwang, C. L. (1995). Multiple attribute decision making: an introduction (Vol. 104). Sage Publications.
  30.  Zadeh, L.A. (1989). Knowledge representation in Fuzzy Logic. IEEE Trans. Knowl. Data Eng., 1(1): 89-100.
  31.  Zaporozhets, V.,Valinas, M.G. and Kurz, S. (2016). Key drivers of EU budget allocation: Does power matter? European Journal of Political Economy,Vol 43: 57–70.