طراحی زنجیره تأمین حلقه بسته سبز برای تولید محصول زیتون تحت شرایط ریسک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

2 دانشیار و عضو هیئت علمی گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

3 دانشیار مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران..

چکیده

بر اثر عواملی چون مسائل سیاسی، تغییرات فناوری و حوادث طبیعی، در کنار گسترش نگرانی ‏های زیست ­محیطی و مسئولیت پذیری اجتماعی، مسائل زنجیره تأمین دیگر فقط نگاهی رو به جلو ندارد و حالت معکوس نیز مد نظر قرار گرفته است. از این‏رو، در مطالعه حاضر، با طراحی و مدل‏سازی زنجیره تأمین حلقه بسته سبز چنددوره­ای و چندمحصولی در زمینه تولید زیتون، بهینه ­سازی سود کل زنجیره و هزینه­ های آلاینده ­های حاصل از فرآیند فرآوری این محصول با استفاده از الگوریتم ژنتیک برای داده­ های محصول زیتون ایران طی سال ­های 1395 تا 1397 بررسی شد. همچنین، با وارد کردن ریسک به مدل پیشنهادی و در نظرگرفتن تقاضای تمامی مراکز تحت شرایط ریسک، مدل به واقعیت نزدیک‏تر شد. نتایج مطالعه نشان داد که این زنجیره با مقدار 55417 میلیارد ریال سودآور است؛ اما با توجه به نسبت هزینه دفع به سود بازیافت پسماندها (91/431)، زنجیره تأمین زیتون و فرآورده ­های آن در زمینه بازیافت پسماند ضعیف عمل می­ کند که با اصلاح زنجیره، این نسبت 79 درصد کاهش خواهد یافت؛ همچنین، در این زنجیره، نیاز به واردات در شرایط ریسک وجود ندارد و کلیه نیازهای بازار و تقاضای مراکز صادرات، بدون هیچ‏گونه فروش از دست­رفته از طریق زنجیره، تأمین می‏شود. بنابراین، با کارخانه ­های فرآوری زیتون و احداث کارخانه­ های فرآوری پسماندهای حاصل از روغن­ کشی بتوان با بازیابی و یا تولید مواد باارزش از پسماندها، می‏توان بهره­ وری صنایع تبدیلی زیتون را افزایش داد. از سوی دیگر، با توجه به توان و ظرفیت تولید و فرآوری زیتون، شایسته است به‏ منظور افزایش مصرف روغن زیتون در راستای ارتقای سلامت جامعه و ایجاد ارزش افزوده، سیاست ­هایی در سطح کلان اتخاذ شود تا از این رهگذر، تولید محصول زیتون افزایش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Green Closed-loop Supply Chain Design of Olive under Risk Conditions

نویسندگان [English]

  • Anahita Nazari Gooran 1
  • Seyed-Mojtaba Mojaverian 2
  • Mir Saman Pishvaee 3
1 PhD Student in Agricultural Economics, Sari Agricultural Sciences and Natural Resources University. Sari, Iran
2 Associate Professor of Agricultural Economics, Sari Agricultural Sciences and Natural Resources University. Sari, Iran.
3 Associate professor of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

Due to factors such as political issues, technological change and natural disasters as well as the spread of environmental concerns and social responsibility, supply chain issues are no longer just a matter of looking ahead but the reverse-processing is also a matter of consideration. For this purpose, the present paper deals with the design and modeling of multi-periodic and multi-product green closed-loop supply chain in olive production. After designing the supply chain, the optimization of the whole chain profit and costs of the pollutants from the olive-product-processing process was investigated using a Genetic Algorithm based on Iranian olive data during the years 2016 to 2018. The model also came closer to reality by incorporating risk into the proposed model and taking into account the demand of all centers under risk conditions. The results show that the chain is profitable at 55417 billion Riyals, but with respect to the waste disposal to waste recycling cost-benefit ratio, 431.91, Iran's olive supply chain performs poorly in waste recycling, which by incorporating this model and revising the chain, this ratio will be reduced by 79%. Furthermore, according to the results, there is no need for import in risky conditions and all the market’s demand and export centers demand is met without any lost sales by the chain itself. It is, therefore, suggested to increase productivity in the field of olive-conversion-industries by equipping olive processing plants and constructing oil-production waste processing plants. On the other hand, in spite of the potentials and capacity of olive production and processing, it is suggested that macro-level policies be adopted to increase the consumption of olive oil in order to promote community health and create added value in order to increase the production of these products compared to its present value.

کلیدواژه‌ها [English]

  • green closed-loop supply chain
  • Conditional Value-at-Risk
  • Genetic algorithm
  • Olive
  1. Alfonso-Lizarazo, E.H., Montoya-Torres, J.R. and Gutiérrez-Franco, E. (2013). Modeling reverse logistics process in the agro-industrial sector: the case of palm oil supply chain. Applied Mathematical Modelling, 37(23): 9652-9664.
  2. Ashouri, T. (2012). Economic study of distribution in olive marketing system: a case study of Tarom city. Master Thesis in Agricultural Economics Engineering, Payame Noor University of Tehran, Faculty of Basic Sciences and Agriculture. (Persian)
  3. Azizi, J. (2000). Economic study of olive production and marketing in Guilan province. Master Thesis in Agricultural Economics Engineering, Shiraz University. (Persian)
  4. Banasik, A., Kanellopoulos, A., Claassen, G., Bloemhof-Ruwaard, J.M. and van der Vorst, J.G. (2017). Closing loops in agricultural supply chains using multi-objective optimization: a case study of an industrial mushroom supply chain. International Journal of Production Economics, 183: 409-420.
  5. Braido, G.M., Borenstein, D. and Casalinho, G.D.O. (2016). Supply chain network optimization using a tabu search based heuristic. Gest. Prod., São Carlos, 23(1): 3-17.
  6. Falahati, A., Dastneshan, H. and Khosrowabadi, H. (2015). The role of green product supply chain in increasing food security. First International Conference on Entrepreneurship, Creativity and Innovation, Kharazmi Higher Institute of Science and Technology, Shiraz, Iran. (Persian)
  7. Fatemi-Amin, S.R. and Mortezaei, A. (2013). Strategic plan of food supply chain. Tehran: University Jihad, Shahid Beheshti Branch. (Persian)
  8. Garivani, A. and Pishvaei, M.S. (2016). Presenting a multi-period planning model for designing a honey export network taking into account the quality requirements of the product. Journal of Tomorrow Management, 15: 21-40. (Persian)
  9. Gholami, M., Khosrowyar, S. and Hejri, Z. (2013). Investigation of the amount of methane produced from olive pomace along with bovine waste. Fourth National Bioenergy Conference of Iran, Tehran. (Persian)
  10. Haji-Mirzajan, A., Pirayesh-Neghab, M. and Faal, F. (2013). Introducing dynamic supply chain model for agricultural products with quality consideration. Proceeding of the Nineth International Conference on Industrial Engineering, Khajeh Nasir al-Din Tusi University of Technology, Faculty of Industrial Engineering, pp. 1-8. (Persian)
  11. Hatefi, S.M. and Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9-10): 2630-2647.
  12. Jebreilzadeh, S., Vahdani, B. and Mousavi, S.M. (2017). Robust model for designing a dynamic closed-loop supply chain with adjustable capacity. Journal of Industrial Engineering, 50(2): 205-230. (Persian)
  13. Jerić, S.V. and Šorić, K. (2010). Single criterion supply chain management in olive oil industry. Croatian Operational Research Review, 1(1): 138-147.
  14. Jindal, A. and Sangwan, K.S. (2014). Closed loop supply chain network design and optimisation using fuzzy mixed integer linear programming model. International Journal of Production Research, 52(14): 4156-4173.
  15. Kadziński, M., Tervonen, T., Tomczyk, M.K. and Dekker, R. (2017). Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega, 68: 168-184.
  16. Kazemi, A. and Kangi, F. (2012). Presenting a model for optimizing the production and distribution program in the supply chain. Third National Conference on Industrial and Systems Engineering, Islamic Azad University, South Tehran Branch, Faculty of Industrial Engineering. (Persian)
  17. Khaledi, M. and Amjadi, A. (2009). The importance and application of supply chain management in agriculture and related industries. Sixth Conference on Agricultural Economics of Iran, Karaj, Iranian Association of Agricultural Economics, Campus of Agriculture and Natural Resources, University of Tehran. (Persian)
  18. Khani, N. and Ghazavi, S. (2015). Challenges and benefits of reverse supply chain. First National Conference on Strategic Services Management, Islamic Azad University, Najafabad Branch. (Persian)
  19. Kisiala, J. (2015). Conditional value-at-risk: theory and applications. Dissertation Presented for the Degree of MSc in Operational Research, the School of Mathematics, the University of Edinburgh.
  20. Mehdipoor, E., Sadrol-Ashrafi, S.M. and Karbasi, A. (2005). A study of potato product marketing in Iran. Scientific and Research Journal of Agricultural Sciences, 11(3): 121-131. (Persian)
  21. Mohammadi, M.S. and Yousefinejad Attari, M. (2017). Multi-layer modeling of supply chain of products with limited lifespan of Etka chain stores (case study: Olive oil). Quarterly Journal of Industrial Management, Faculty of Humanities, Islamic Azad University, Sanandaj Branch, 12(40). (Persian)
  22. Mohammed, A. and Wang, Q. (2017). The fuzzy multi-objective distribution planner for a green meat supply chain. International Journal of Production Economics, 184, 47-58.
  23. Mojarad, A., Salarpour, M. and Saboohi, M. (2013). Food supply chain management, case study: tomato paste production industry in North Khorasan province. Agricultural Economics Research, 5(4): 67-86. (Persian)
  24. Paksoy, T., Pehlivan, N.Y. and Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network design: a case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36(6): 2762-2776.
  25. Pishvaei, M.S. and Torabi, S.A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161(20): 2668-2683.
  26. Shokri, A. and Jafari, M.B. (2015). Location-routing of reverse logistics networks with multiple capacity under uncertainty. Master Thesis, Industrial Engineering, University of Tehran, Farabi Campus. (Persian)
  27. Soleimani, H. and Govindan, K. (2014). Reverse logistics network design and planning utilizing conditional value-at-risk. European Journal of Operational Research, 237(2): 487-497.
  28. Soleimani, H. and Kannan, G. (2015). A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling, 39(14): 3990-4012.
  29. Talaei, M., Farhang Moghaddam, B., Pishvaei, M.S. and Bozorgi Amiri, A. (2015). Presenting a two-objective positioning model for designing a green closed-loop supply chain network. Journal of Transportation, 12(1): 65-77. (Persian)
  30. Tavakkoli-Moghaddam, R., Afsharinia, Z. and Gholipour-Kanani, Y. (2013). Use of a Benders decomposition method for solving a two-echelon multi-commodity supply chain network design problem with stochastic demands. Industrial Engineering Research in Production Systems, 1(2): 155-165. (Persian)
  31. Tavakkoli-Moghaddam, R., Jafarmozdeh, B. and Mullah Alizadeh Zavardehi, S. (2015). Design of multi-objective purchasing-production-distribution network in the green supply chain with multi-objective gravitational search algorithm. International Journal of Industrial Engineering and Production Management, 26(2): 140-156. (Persian)
  32. Tiwari, M.K., Raghavendra, N., Agrawal, S. and Goyal, S. (2010). A Hybrid Taguchi–Immune approach to optimize an integrated supply chain design problem with multiple shipping. European Journal of Operational Research, 203(1): 95-106.
  33. Wang, H.W., Yan, Y.S. and Wei, L. (2013). A revenue sharing model for closed-loop supply chain of green agricultural products. Paper Presented at the Advanced Materials Research.
  34. Yu, H., Solvang, W.D. and Chen, C. (2014). A green supply chain network design model for enhancing competitiveness and sustainability of companies in high north arctic regions. International Journal of Energy and Environment, 5(4): 403-418.
  35. Yurt, Ö. (2015). A generic analysis of food supply chain: case of olive oil industry in Turkey. PhD Thesis, Marketing, Retail and Supply Chain Management, Business School.