تعیین الگوی بهینه‌ کشت محصولات کشاورزی در شهرستان ملاثانی: کاربرد مدل بهینه‌سازی چندهدفه استوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار اقتصاد کشاورزی، گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، اهواز، ایران

2 استادیار اقتصاد کشاورزی، گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، اهواز، ایران

3 دانش‏ اموختة کارشناسی ارشد اقتصاد کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

در مطالعه حاضر، برای تعیین الگوی بهینه کشت اراضی شهرستان ملاثانی واقع در استان خوزستان، از مدل برنامه‌ریزی چندهدفه خطی شامل اهداف اقتصادی، اجتماعی و زیست‌محیطی با در نظر گرفتن عدم اطمینان به ‏صورت مجزا و توأم، در دو مرحله جداگانه، استفاده شد. در مرحله اول مطالعه، از عدم اطمینان موجود در داده‌ها چشم‌پوشی شد، اما در مرحله دوم، با لحاظ کردن این ویژگی، بررسی نتایج هر کدام از آنها جداگانه صورت گرفت. پس از گردآوری داده‌های پژوهش از ارگان‌های دولتی برای سال زراعی 96-1395، مدل‌های مورد نظر در نرم‏افزار GAMS کدگذاری شدند. طبق نتایج مرحله اول، افزایش سطح زیر کشت جو از چهار هزار هکتار به 74/5 هزار هکتار (55/43 درصد) و سبزیجات از صی‏صد هکتار به 410 هکتار (38/37 درصد) و همچنین، کاهش سطح زیر کشت کلزا در الگوی کشت چندهدفه از پانصد به 120 هکتار (34/75 درصد) و کاهش سطح زیر کشت گندم نیز 43/12 درصد ارزیابی شد. نتایج مرحله دوم حاکی از وجود یک رابطه متقابل بین منافع حاصل از الگوی کشت بهینه و سطح محافظت از آن در مقابل داده‌های نامطمئن بود، به ‏گونه ‏ای که با افزایش سطح انحراف از محدودیت از ده تا پنجاه درصد، مقدار سود ناخالص 5/2 درصد کاهش می‌یابد. نتایج پژوهش حاضر می‌تواند به تصمیم‌گیرندگان بخش کشاورزی در دستیابی به هدف کسب بیشترین سود (که به‏طور متوسط، پنج درصد بیشتر از الگوی کشت فعلی برآورد شده است)، با در نظر گرفتن چند هدف متفاوت کمک کرده، از هدررفت منابع کمیاب و باارزش جلوگیری کند.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the Optimal Cropping Pattern of Agricultural Crops in Mollasani Coumty of Iran: Application of Robust Multi-Objective Optimization Model

نویسندگان [English]

  • Abbas Abdeshahi 1
  • M. Mardani Najafabadi 2
  • Monireh Zeinali 3
1 Associate Professor of Agricultural Economics, Department of Agricultural Economics, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
2 Assistant Professor of Agricultural Economics, Department of Agricultural Economics, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
3 MSc Graduate in Agricultural Economics, University of Zabol, Zabol, Iran
چکیده [English]

In this study to determine optimum crop pattern of the county of Molasani, linear multi-objective planning model include economic, social and environmental objectives has been used in two phases. In the first phase of the study, the uncertainty in the data is ignored, but in the second phase, the mentioned feature is included and the results of each of them are discussed separately. Necessary data were collected from government agencies for the 2014-15 crop year and the models were coded in GAMS software. According to the results in the first phase, barely acreage increased from 4 to 5.74 thousand hectares (43.55 percent) and vegetables acreage increased from 300 to 410 hectares (37.38 percent). Also, in this phase rapeseed acreage decreased from 500 to 120 hectares (75.34 percent) and wheat acreage decreased by 12.43 percent. In the second phase of the study, it was found that there is a mutual relationship between the benefits of the optimal cropping pattern and the level of protection against uncertain data; such that by increasing the level of deviation from constraint from 10% to 50%, the gross profit decreases by 2.5%. The results can help agricultural decision makers achieve the goal of maximizing profit, averaging 5% more than the current cropping pattern, by considering several different goals and avoiding wastage of scarce and valuable resources.

کلیدواژه‌ها [English]

  • Multi-Objective Programming
  • Uncertainty
  • Cropping pattern
  • Molasani
  1. Bahrami, N., Dourandish, A., Shahnoushi, N. and Kohansal, M. (2014). Determining optimal cropping pattern in Esfarayen city (application of fuzzy programming with interval values based on unlimited alpha-cuts. Iranian Journal of Agricultural Science, 64: 12-24. (Persian)
  2. Bertsimas, D. and Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98(1-3): 49-71.
  3. Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1): 35-53.
  4. De Oliveira, F., Volpi, N.M.P. and Sanquetta, C.R. (2003). Goal programming in a planning problem. Applied Mathematics and Computation, 140(1): 165-178.
  5. Fathi, F. and Zibaei, M. (2012). Water resources sustainability using goal programming approach in optimizing crop pattern, strategy and irrigation method. Journal of Iran-Water Resources Research, 8(1): 10-19. (Persian)
  6. Filippi, C., Mansini, R. and Stevanato, E. (2017). Mixed integer linear programming models for optimal crop selection. Computers and Operations Research, 81: 26-39.
  7. Hazell, P.B. and Norton, R. (1986). Mathematical programming for economic analysis in agriculture. London, UK: Colliei MacMillan publisher.
  8. Jayaraman, R., Colapinto, C., Torre, D.L. and Malik, T. (2015). Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates. Energy Policy, 87: 447-454.
  9. Jones, D. and Barnes, E.M. (2000). Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Agricultural Systems, 65: 137-158.
  10. Julaei, R. Azar, A. and Chizari, A.H. (2005). Multi-regional planning models and its application in agriculture: a case study of Fars province. Journal of Agricultural Economics and Development, 13: 87-112. (Persian)
  11. KAJO (2014). Studies on the pattern of cultivation in the pilot province of Isfahan province located in Shahreza city. Ahvaz: Khouzestan Agriculture-Jahad Organization (KAJO). (Persian)
  12. Majidi, N., Alizadeh, A. and Ghorbani, M. (2011). Determining the optimum cropping pattern for water resources management of Mashhad-Chenaran Plain. Journal of Water and Soil, 25(4): 12-28. (Persian)
  13. Manos, B., Papathanasiou, J., Bournaris, T. and Voudouris, K. (2010). A multicriteria model for planning agricultural regions within a context of groundwater rational management. Journal of Environmental Management, 91(7): 1593-1600.
  14. Mardani, M., Nikouei, A., Ziaei, S. and Ahmadpour, M. (2016). Codifying regional cropping pattern of agricultural and horticultural products in Isfahan province: multi-objective structural planning approach. gricultural Economics and Development, 30(3): 188-206. (Persian)
  15. Mardani, M., Ziaei, S. and Nikouei, A. (2018). Optimizing the trade of virtual water in regional cropping pattern of the Isfahan province: application of multi-criteria models. Journal of Agricultural Economics and Development, 100(25): 39-88. (Persian)
  16. Mishra, B., Nishad, A.K. and Singh, S.R. (2014). Fuzzy multi-fractional programming for land use planning in agricultural production system. Fuzzy Information and Engineering, 6(2): 245-262.
  17. Mousavi, S. and Akbari, S. (2014). Investigating the optimal cropping pattern and its impact on water resources management, case study: Marvdasht-Karbal. Journal of Water Resources Engineering, 7(22): 101-110. (Persian)
  18. Rezaee Zaman, M. and Afruzi, A. (2015). Evaluation of climate change impacts on crop yields and proposing a change in cropping pattern strategy (case study: Simineh-Rood basin). Journal of Soil and Water Conservation, 4(4): 51-64. (Persian)
  19. Sabouhi Sabouni, M. and Mardani, M. (2013). Application of robust optimization approach for agricultural water resource management under uncertainty. Journal of Irrigation and Drainage Engineering, 139(7): 571-581. (Persian)
  20. Sante-Riveira, I., Boullon-Magan, M., Crecente-Maseda, R. and Miranda-Barros, D. (2008). Algorithm based on simulated annealing for land-use allocation. Computers and Geosciences, 34(3): 259-268.
  21. Sharma, D.K. and Jana, R.K. (2009). Fuzzy goal programming based genetic algorithm approach to nutrient management for rice crop planning. International Journal of Production Economics, 121(1): 224-232.
  22. Shirzadi, S., Sabouhi Sabouni, M. and Jalali, A. (2013). Determination of Kashmar Plain cultivar pattern based on preserving and maintaining the quality of groundwater resources. Economics and Agricultural Development, 26(4): 261-271. (Persian)
  23. Siadat, A.S., Fathi, G. and Abdali, A. (2009). Determination of the most suitable crop rotation systems in Ahvaz region. Iranian Journal of Crop Science, 11(2): 174-192. (Persian)
  24. Ustaoglu, E., Perpina Castillo, C., Jacobs-Crisioni, C. and Lavalle, C. (2016). Economic evaluation of agricultural land to assess land use changes. Land Use Policy, 56: 125-146.
  25. Ward, F.A. (2007). Decision support for water policy: a review of economic concepts and tools. Water Policy, 9: 1–31.
  26. Zeng, X., Kang, S., Li, F., Zhang, L. and Guo, P. (2010). Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management, 98(1): 134-142.
  27. Zhang, C., Engel, B.A., Guo, P., Zhang, F., Guo, S., Liu, X. and Wang, Y. (2018). An inexact robust two-stage mixed-integer linear programming approach for crop area planning under uncertainty. Journal of Cleaner Production, 204: 489-500.