بررسی وضعیت جبران ریسک تولیدکنندگان سیب در استان های ایران: کاربرد الگوی قیمت گذاری دارایی سرمایه (CAPM)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه اقتصاد کشاورزی، دانشگاه تهران، تهران، ایران

2 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه تهران، تهران، ایران

چکیده

زمانی که قیمت دریافتی تولیدکننده برای یک محصول متناسب با میزان ریسک مربوطه باشد، انتظار می رود تولید آن تداوم داشته باشد و در غیر این صورت، آن محصول به تدریج از برنامه تولید حذف شود. مطالعه حاضر با هدف بررسی وضعیت جبران ریسک بازدهی تولیدکنندگان سیب در استان های ایران با استفاده از الگوی قیمت گذاری دارایی سرمایه (CAPM) صورت گرفته است. در این راستا ابتدا با توجه به اطلاعات موجود، پرتفوی سیب کشوری بر اساس بازدهی تولید این محصول در استان های مختلف تشکیل و ضریب ریسک برای هر استان محاسبه گردید. نتایج مطالعه نشان داد استان ایلام با ضریب 21/0 کم ریسک ترین استان و استان های سمنان و تهران به ترتیب با ضریب 92/1 و 88/1 پرریسک ترین استان های تولیدکننده سیب می باشند. از نگاه جبران ریسک، قیمت های این محصول ریسک سیب را در کلیه استان های مورد مطالعه بجز در استان های ایلام، البرز، یزد، کرمانشاه، فارس، خراسان رضوی، گیلان، کرمان، اصفهان، کهگلویه و بویراحمد و سمنان جبران می نماید. نتایج همچنین نشان داد که دلیل اصلی عدم جبران ریسک در بسیاری از مناطق، پایین بودن نسبی عملکرد این محصول و در نتیجه بالا بودن قیمت تمام شده آن در آن مناطق می باشد. براین اساس، تمرکز بر روی بهبود بهره‌وری زمین در مناطق یاد شده توصیه می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Risk Compensation for Apple Producers in Iranian Provinces: Application of Capital Asset Pricing Model (CAPM)

نویسندگان [English]

  • Habibollah Salami 1
  • Reza Shakeri Bostanabad 2
1 Professor, Department of Agricultural Economics, University of Tehran, Tehran, Iran
2 Ph.D. Student in Agricultural Economics, University of Tehran, Tehran, Iran
چکیده [English]

When producer price and consequently, generated revenue for a product is proportional to its relative risk, its production is expected to be continued, and otherwise the product will be gradually eliminated from production plan by producers. The purpose of this study was to investigate the risk compensation situation of apple production in Iranian provinces using the Capital Asset Pricing Model (CAPM). To this end, according to the available information, a portfolio consists of apple production in different provinces has been formed and the systematic risk of apple production in each of the provinces was calculated relative to the risk of overall portfolio. Results revealed that Ilam province with the beta coefficient of 0.21 was the least risky and Semnan and Tehran provinces with the beta coefficient of 1.92 and 1.88 were the riskiest apple producing provinces, respectively. In terms of risk compensation, the prices of this product compensate the risk of apple production in all the provinces except Ilam, Alborz, Yazd, Kermanshah, Fars, Khorasan Razavi, Gilan, Kerman, Isfahan, Kohglouieh and Boyer Ahmad and Semnan provinces. Results also indicated that the main reason for not compensating risk in some regions is the relative low level of land productivity, and consequently high level of average cost of production in these provinces. Accordingly, focus on improving land productivity is recommended for those provinces.

کلیدواژه‌ها [English]

  • : Capital Asset Pricing Model
  • Systematic Risk
  • Risk Compensation
  • Apple
  • Iran
  1. Bigge, H.M. and Langemeier, M.R. (2004). Relative profitability and risk of Kansas farms and the SandP500. Journal of the American Society of Farm Managers and Rural Appraisers, 67(1): 57-63.
  2. Black, F. (1993). Estimating expected return. Financial analysts Journal, 49(5): 36-38.
  3. Black, F., Jensen, M.C. and Scholes, M. (1972). The capital asset pricing model: some empirical tests. Studies in the Theory of Capital Markets, 81(3): 79-121.
  4. Blume, M.E. and Friend, I. (1973). A new look at the capital asset pricing model. The Journal of Finance, 28(1): 19-34.
  5. Bukvic, I.B., Starcevic, D.P. and Fosic, I. (2016). Adequacy of the CAPM for estimating the cost of equity capital: empirical study on underdeveloped market. Economic and Social Development: Book of Proceedings, 25.
  6. Celik, S. (2012). Theoretical and empirical review of asset pricing models: a structural synthesis. International Journal of Economics and Financial Issues, 2(2): 141-178.
  7. Curto, J.D. and Pinto, J.C. (2009). The coefficient of variation asymptotic distribution in the case of non-IID random variables. Journal of Applied Statistics, 36(1): 21-32.
  8. Daniel, M.S. and Featherstone, A.M. (2001). Assessing agricultural risk among states. Montana, 4: 10-14.
  9. Dhrymes, P.J. (2017). Portfolio theory: origins, Markowitz and CAPM based selection. In: Guerard, John B. (ed.) Portfolio Construction, Measurement, and Efficiency (pp. 39-48), Springer, Charm (2017).
  10. Estrada, J. (2002). Systematic risk in emerging markets: the D-CAPM. Emerging Markets Review, 3(4): 365-379.
  11. Fama, E.F. and MacBeth, J.D. (1973). Risk, return, and equilibrium: empirical tests. Journal of Political Economy, 81(3): 607-636.
  12. Farrell, J.L. (1983). Guide to portfolio management. McGraw-Hill College.
  13. MAJ (2017). Agricultural statistics. Tehran: Ministry of Agriculture-Jahad (MAJ), Information and Communication Technology Center. (Persian)
  14. Narayan, P. (1990). Farm planning under risk: an application of the capital asset pricing model to New Zealand agriculture. A Thesis at Lincoln University.
  15. Nemati, M. (2013). Systematic production risk measurement for major horticultural products in Iran. Master's Thesis, University of Tehran. (Persian)
  16. Pishbahar, E., Darparnian, S. and Ghahremanzadeh, M. (2015). Effects of climate change on maize yield in Iran: application of spatial econometric approach with panel data. Agricultural Economics Research, 7(26): 83-106. (Persian)
  17. Sadler, M. and Magnan, N. (2011). Grain import dependency in the MENA region: risk management options. Food Security, 3(1): 77-89.
  18. Salami, H. and Nemati, M. (2014). Exploring systematic yield risk and its strengthening factors for apple product in Iran: application of spatial autoregressive models. Agricultural Economics and Development, 27(4): 288-299. (Persian)
  19. Schnepf, R. (1999). Assessing agricultural commodity price variability. ERS/USDA, Agricultural outlook.
  20. Sharpe, W.F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3): 425-442.
  21. Tahamipour, M., Salami, H., Yazdani, S. and Chizari, A.H. (2014). Determining spatial dependency of systematic risk of dryland wheat yield in Iran: application of spatial autoregressive models. Iranian Journal of Agricultural Economics and Development Research (IJAEDR), 44(3): 343-356. (Persian)
  22. Thorsen, B.J. (2010). Risk, returns and possible speculative bubbles in the price of Danish forest land? Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics.
  23. Tóth, M., Lančarič, D., Piterková, A. and Savov, R. (2014). Systematic risk in agriculture: a case of Slovakia. Agris On-line Papers in Economics and Informatics, 6(665-2016-45036): 185-193.
  24. Tóth, M., Rábek, T., Boháčiková, A. and Holúbek, I. (2017). Risk and profitability of animal and crop production in Slovak farms. Semantic Scholar. Available at https://www.semanticscholar.org.
  25. Turvey, C.G. and Driver, H. (1987). Systematic and non-systematic risks in agriculture. Canadian Journal of Agricultural Economics/Revue Canadienne d'Agroeconomie, 35(2): 387-401.