بررسی عوامل انگیزشی مشارکت کشاورزان در بورس شاخص‌های هواشناسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

2 دانش‌آموختة کارشناسی ارشد اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 نویسنده مسئول و دانشیار اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

4 دانشیار اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

طی سال‌های اخیر، ابزاری نوین تحت عنوان بورس شاخص‌های هواشناسی، جهت مقابله با ریسک تولید معرفی شده است و در بورس‌های مطرح دنیا مبادله می‌شود. با توجه به وجود ریسک ناشی از تغییر شرایط آب و هوایی در بخش کشاورزی، در پژوهش حاضر ضمن معرفی بورس شاخص‌های هواشناسی، عوامل مؤثر بر مشارکت کشاورزان در بورس یاد شده، مورد بررسی قرار گرفته است. بدین منظور از الگوی لاجیت ترتیبی استفاده شده است و داده‌های مورد نیاز از طریق مصاحبه حضوری و تکمیل پرسشنامه از 160 کشاورز بخش خرم‌آباد شهرستان تنکابن، جمع‌آوری گردیده است. نتایج این پژوهش نشان داد، 79 درصد از کشاورزان منطقه تمایل به شرکت در بورس پیشنهادی شاخص‌های هواشناسی داشته‌اند و تنها 21 درصد تمایل به مشارکت در این نوع بورس نشان نداده‌اند. این درصد بالای تمایل به مشارکت در بورس شاخص‌های هواشناسی، حکایت از استقبال بالای کشاورزان از این ابزار جدید دارد. همچنین متغیرهای سن، نحوه مالکیت و ضریب ریسک‌گریزی کشاورزان بر سطح مشارکت کشاورزان تاثیر منفی داشته‌اند. تحصیلات، پس‌انداز احتیاطی و تنوع کشت نیز متغیرهای مؤثر و افزایش‌دهنده میزان مشارکت کشاورزان می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of motivational factors on farmers's participation in weather exchange

نویسندگان [English]

  • Z. Nematollahi 1
  • N. Fakouri 2
  • S. A. Hosseini-yekani 3
  • H. Amirnejad 4
1 PhD Student in Agricultural Economics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 MSc Graduate in Agricultural Economics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
3 Corresponding Author and Associate Professor of Agricultural Economics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Associate Professor of Agricultural Economics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran,
چکیده [English]

In recent years, in order to deal with the production risk, new tools named Weather Exchange has been introduced and exchange in the many of world’s Stocks. Due to existing of the risk of changing weather conditions in the agricultural sector, this study aim to introduce the weather exchange. The factors affecting farmers, participation in the exchange above also is studied. For this purpose, the Order Logit models used and the data required is collected by interview and questionnaires with 160 farmers in Khorram Abad Area of Tonekabon. The results showed that 79 percent of farmers would like to participate in the proposed weather exchange and only 21% have not shown willingness to participate in this type of exchange. This high percentage of willingness to participate in this market indicated high tendency of farmers of this new tool. age, ownership and risk aversion coefficient of farmers have had a negative impact on the level of participation of farmers. Education, contingency reserve and diversification are also effective and multiplier variables on the participation of farmers.

  1. Arrow, K.J. (1965). Aspects of the theory of risk-bearing. Helsinki: Academic Publishers.
  2. Ashktorab, N., Layani, G. & Soltani, G.R. (2015). Evaluation of the effects of climate change and government policies on yield and crop area of corn in Iran: panel data approach. Journal of Agricultural Economics and Development, 29 (1): 31-42. (Persian)
  3. Bae, K.I. & Choung, J.H. (2009). A study on the market price of weather risk inpricing weather derivatives. Journal of Derivatives Korea, 27(2): 49-66.
  4. Barry, P.J. (1984). Risk management in agriculture. Iowa State University Press.
  5. Castellani, D. & Vigano, L. (2015). An analysis of the demand of weather index-based insurance with flexible attributes in a risk management framework. European Scientific Journal, 11(16): 1-21.
  6. Chen, J.H., Yang, L.R., Suc, M.C. & Lina, J.Z. (2010). A rule extraction based approach in predicting derivative use for financial risk hedging by construction companies. Expert Systems with Applications, 37(9): 6510-6514.
  7. Cheng, H.T. & O.J., C. (1988). Demand analysis of fresh and frozen finfish and shellfish in the United States. American Journal of Agricultural Economics, 70: 533-542.
  8. Ferdowsi, R. & Koopahi, M. (2005). Determination of risk tendency of wheat farmers (case study in Golestan province). Agricultural Economics and Development, 52: 27-43. (Persian)
  9. Ghalavand, K. & Chizari, M. (2006). Investigating the factors affecting agricultural insurance acceptance among wheat farmers in Tehran and Mazandaran provinces. Insurance and Agriculture, 11: 49-68. (Persian)
  10. Gojarati, D. (2013). Applied Econometrics N. Mehregan and L. Aqeli (Trans.). Hamedan: Noor-e Elm Publications. (Persian)
  11. Goodwin, B.K. (1993). An empirical analysis of the demand for multiple peril crop insurance. American Agricultural Economics, 75: 425-434.
  12. Greene, W.H. (2005). Econometric analysis. New York: MacMillan.
  13. Hayati, D. & Haffari, F. (2014). Effective structures on tendency to pomegranate crop insurance: an antarctic case study in Natanz. Journal of Rural Development Strategies, 1: 103-119. (Persian)
  14. Hong, S.J. & Sohn, S.Y. (2013). Peer group analysis for introducing weather derivatives for a city. Expert Systems with Applications, 40: 5680-5687.
  15. Howard, A. & Berry, W. (2008). The soil and heath: A study of organic agriculture. The University Press of Kentucky.
  16. Innes, R. (2003). Crop insurance in a political economy, an alternative perspective on agriculture policy. American Agricultural Economics, 85: 318-335.
  17. Iravani, H., Vahedi, M., Kalantari, K. & Movahedi Mohammadi, H. (2006). Factors affecting adoption of wheat insurance in Tahrshah County. Agricultural Sciences of Iran, 37-2(1): 137-144. (Persian)
  18. Karami, A. (2008). Investigating the factors affecting the likelihood of adopting wheat crop insurance in Kohkilouyeh and Boyer Ahmad province. Agricultural Economics and Development, 5(2): 232-250. (Persian)
  19. Karbasi, A., Ziaei, S. & Abdshahi, A. (2009). Determining the factors affecting wheat insurance claims: a comparison of the classical and Bayzian econometric approach. Agricultural Economics and Development, 4: 149-163. (Persian)
  20. Khodaverdizadeh, M., Khodaverdizadeh, S. & Masoumzadeh, F. (2014). Determining the effective factors on rural farm insurance claims (case study: Marand County). Quarterly Journal of Rural Development Strategies, 1(3): 1-18. (Persian)
  21. Khosravipour, B., Amani, A., Shahnoushi Foroushani, N. & Eisireh, A. (2011). The variables affecting the acceptance of wheat crop insurance among wheat farmers in Dezfoul. Rural and Development, 14: 127-146. (Persian)
  22. Lazo, J.K., Lawson, M., Larsen, P.H. & Waldman, D.M. (2011). US economic sensitivity to weather variability. Bulletin of the American Meteorological Society, 92: 709-720.
  23. Lee, C.S., Jin, Z.Z. & Song, C.G. (2011). A study on pricing and risk evaluation of weather insurance based on multivariate temperature model. Actuarial Studies, 3(1): 83-106.
  24. Liao, T.F. (1994). Interpreting probability models: logit, probit and other generalized linear models. Quantitative Applications in the Social Sciences, 7-101.
  25. Mirzad, N. (2014). Investigating the factors affecting the acceptance of agricultural crop insurance among palmers in Iranshahr. Gorgan University of Agricultural Sciences and Natural Resources. (Persian)
  26. Nadolnyak, D. & Hartarska, V. (2012). Agricultural disaster payments in the southeastern US: do weather and climate variability matter? Applied Economics, 44: 4331-4342.
  27. Naeimi, A., Pezeshki Rad, G. & Chizari, M. (2009). Individual, educational and promotional factors affecting the attitude of wheat farmers in Zanjan province toward agricultural insurance. Journal of Agricultural Management Research, 9: 51-61. (Persian)
  28. Najafi, V. & Ghaderi, K. (2006). Determining the factors affecting the demand of industrial trap insurance: a case study of Kermanshah province. Insurance and Agriculture, 12: 3-14. (Persian)
  29. Nantui Mabe, F., Nketiah, P. & D, D. (2014). Farmers’ willingness to pay for weather forecast information in Savelugu-Nanton municipality of the northern region. Russian Journal of Agricultural and Socio-Economic Sciences, 12(36): 34-44.
  30. Nematollahi, Z., Hosseini Yekani, S.A. & Hosseinzadeh, M. (2015). Estimation of esfarayens' farmers risk aversion coefficient and its influencing factors (nonparametric approach). Journal of Agricultural Economics and Development, 29(3): 284-293. (Persian)
  31. Praat, J.W. (1964). Risk aversion in the small and in the large. Econometrics, 32: 122-136.
  32. Ranjbar Malekshah, T., Hosseini Yekani, S.A. & Mojaverian, S.M. (2015). The degree of absolute risk aversion of farmers and determining the factors affecting it in Gharbaran Sari. Economics and Agricultural Development, 29(4): 401-410. (Persian)
  33. Rostami, M.R. (2001). Investigating the effect of marketing factors on the behavioral mechanism of fisheries products consumers in Tehran. Tarbiat Modares University. (Persian)
  34. Sakhi, F., Mohammadi, H. & Sabouhi Sabouni, M. (2015). Investigating the probability and the factors affecting the participation of farmers in future markets and derivatives (case study: cotton product of Gonbad Kavoos County). Journal of Agricultural Economics and Development, 29(3): 242- 257. (Persian)
  35. Salami, H. & Einollahi Ahmadabadi, M. (2009). Factors affecting beet farmers to buy agricultural products insurance: a case study of Khorasan province. Agricultural Insurance Conference on Development and Investment Security, Agricultural Bank of Iran, 9-22. (Persian)
  36. Shahnoushi Foroushani, N., Firouzzare, A., Jaleh-Rajabi, M., Daneshvar, M. & Dehghanian, S. (2011). The use of the order logit model in an investigation of the effective factors on bread waste (case study of mashhad). Journal of Economic Research, 46(3): 111-132. (Persian)
  37. Smith, V.H. & Goodwin, B. (2001). Crop insurance, moral hazard and agricultural chemical use. American Agricultural Economics, 78(2): 428-438.
  38. Spicka, J. & Hnilica, J. (2013). A methodical approach to design and valuation of weather derivatives in agriculture. Hyundai Publishing Corporation Advances in Meteorology, 2: 1-8.
  39. Tiraei Yari, N. (2002). Investigating the personality factors affecting modernity in accepting farm insurance plan by Khouzestan province operators. Tehran: Tarbiat Modares University. (Persian)
  40. Vandeveer, M.L. (2001). Demand for area crop insurance among litchi producers in northern Vietnam. Agricultural Economics, 26: 173-184.
  41. Xiu, F., Xiu, F. & Bauer, S. (2012). Farmers’ willingness to pay for cow insurance in Shaanxi province, China. Procedia Economics and Finance, 1: 431-440.
  42. Yazdani, S. & Feizabadi, Y. (2004). Determining the degree of risk aversion of poultry and studying the factors affecting it: case study of Sabzevar. Agricultural Sciences Journal, 2: 15-24. (Persian)
  43. Yazdanpanah, M.N., Monfared, S. & Hochrainer, S. (2011). Farmers statisfaction about crop insurance: case of south of Iran. Development on the Margin, 5-7 October, Tropentag.
  44. Yeganeh, H., Beshkoufeh, M.S. & Gholizadeh, G.M. (2016). Investigation of socioeconomic variables affecting the acceptance of rangeland insurance to operators: the case of Kalaleh. Paper Presented at the Second National Congress on the Development of Agricultural Science and Natural Resources. (Persian)
  45. Zafar, V. & Javadian, S.A. (2014). Investigating the factors affecting adoption and development of livestock insurance by producers in Qom province. Insurance and Agriculture, 11: 75-100. (Persian)
  46. Zahedian Tajanaki, R., Mojaverian, S.M. & Shahpouri, A.R. (2015). Investigating the effective factors on damage groups in agricultural crop insurance (a case study of Iran's beekeepers, low-productivity units). Agricultural Economics and Development, 9(3): 1-13. (Persian)