الگوی تأثیرگذاری نهاده ‏ها بر مخاطرة تولید گندم آبی و دیم در شرق استان گلستان

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه فردوسی مشهد، ایران

2 نویسندة مسئول و استاد گروه اقتصاد کشاورزی، دانشگاه فردوسی مشهد، ایران

3 استاد گروه اقتصاد کشاورزی، دانشگاه فردوسی مشهد، ایران

4 عضو هیئت علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، گرگان، گرگان، ایران

چکیده

نهاده­های تولید از مهم‌ترین عوامل مؤثر بر مخاطره محصولات کشاورزی است. در مطالعه حاضر، تأثیر نهاده‌‏ها بر مخاطره تولید با استفاده از اطلاعات 221 کشاورز گندم ‌کار دیم و آبی در شرق استان گلستان برای سال زراعی 1395-1394 از طریق الگوی پیشنهادی جاست و پاپ بررسی شد. نتایج نشان داد که نهاده بذر برای هر دو محصول تأثیر مثبت و معنی‌دار بر میانگین تولید دارد؛ همچنین، دو نهاده کود شیمیایی و آب مصرفی برای گندم آبی و نهاده‏های کود شیمیایی، سم، ماشین‏آلات و نیروی کار برای گندم دیم اثر افزایشی بر میانگین تولید دارند و افزون بر این، سم مصرفی برای هر دو محصول اثر مخاطره‏ افزایی دارد و دو نهاده کود شیمیایی و ماشین‌آلات برای گندم آبی و بذر و نیروی کار برای گندم دیم اثر مخاطره‏ کاهندگی دارند. بنابراین، برای کاهش مخاطره تولید گندم آبی و دیم و افزایش میانگین تولید این محصول راهبردی، توصیه می­شود که از نهاده‏های کاهنده مخاطره در زمان مناسب و به‏ه درستی بهره‏ گیری شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect Patterns of Inputs on Production Risk of Irrigated and Rainfed Wheat in Eastern Region of Golestan Province in Iran

نویسندگان [English]

  • fatemeh Habibinodeh 1
  • Mohammad Ghorbani 2
  • Mohammad Reza Kohansal 3
  • noor mohammad Abyar 4
1 PhD Student in Agricultural Economics, Ferdowsi University of Mashhad, Iran
2 Corresponding Author and Professor, Deparment of Agricultural Economics, Ferdowsi University of Mashhad, Iran
3 Professor, Deparment of Agricultural Economics, Ferdowsi University of Mashhad, Iran
4 Faculty Member of Golestan Agricultural and Natural Resources Research and Eduvation Center, Gorgan, Iran
چکیده [English]

Production inputs are one of the most important factors affecting the risk of agricultural products. This study aimed at investigating the effects of inputs on the production risk of irrigated and rainfed wheat through the information collected from 221 producers of these products in eastern region of Golestan province of Iran in the 2015-2016 cropping year using the suggested model of Just and Pope (1979). The results showed that for both products, seed input had a significant positive impact on the average production; also, the inputs of fertilizer and consumed water had the production increasing impact on the average irrigated wheat production, while such an impact could be found by application of the inputs including fertilizer, pesticide, machinery and labor for the rainfed wheat. In addition, the study results indicated that the pesticide input used for both products had a risk increasing impact on the production; furthermore, the inputs of seed and labor for the rainfed wheat and the fertilizer and machinery inputs for the irrigated wheat reduced the production risk. Therefore, the study recommended using properly the risk reducing inputs at the right time to reduce the production risk of irrigated and rainfed wheat crops and as a result, to increase the average production of such a strategic product.

کلیدواژه‌ها [English]

  • Risk
  • Production Function
  • Just and Pope Model
  • Wheat
  1. منابع

    1. Cabas, J., Weersink, A. and Olale, E. (2010). Crop yield response to economic, site and climatic variables. Climatic Change, 101(3-4): 599-616.
    2. Carew, R., Smith, E.G. and Grant, C. (2009). Factors influencing wheat yield and variability: evidence from Manitoba, Canada. Journal of Agricultural and Applied Economics, 41(03): 625-639.
    3. Dashti, G., Khaksar Khiabani, F. and Ghahremanzadeh, M. (2013). Determination of effective inputs on production and production-risk of onion in Tabriz plain. Iranian Journal of Agricultural Economics and Development Research, 44(3): 389-397. (Persian)
    4. Dillon, J.L. and Anderson, J.R. (1971). Allocative efficiency, traditional agriculture and risk. American Journal of Agricultural Economics, 53(1): 26-32.
    5. Ehsan, A., Tehrani, R., Eslami-Bidgoli, Gh.R. (2008). Investigation of risk aversion coefficient and production variance in risk management (case study of Dezfoul tomato farmers). Agricultural Economics and Development, 16(61): 17-35. (Persian)
    6. Gardebroek, C., Chavez, M.D. and Lansink, A.O. (2010). Analyzing production technology and risk in organic and conventional Dutch arable farming using panel data. Journal of Agricultural Economics, 61(1): 60-75.
    7. Ghorbani, M. and Jafari, F. )2009(. Do production inputs have the role of insurance in the wheat production process? Agricultural Economics and Development,17(68): 1-16. (Persian)
    8. Ghorbani, M., Koocheki, A., Kohansal, M. and Jafari, F. )2009(. Application of risk profile in crop products risk management of North Khorasan province (case study of sugar beet). Agricultural Economics, 3(3): 31-48. (Persian)
    9. Golkaran Moghaddam, S. (2015). Production risk and risky tendencies of saffron farmers in Torbat-e Heydarieh with emphasis on poverty index. Agricultural Economics and Development, 22(87): 1-21. (Persian)
    10. Guttormsen, A.G. and Roll, K.H. (2014). Production risk in a subsistence agriculture. The Journal of Agricultural Education and Extension, 20(1): 133-145.
    11. Hamraz, S., Kohansal, M. and Ghorbani, M. (2010). Agro biodiversity effects on farm production risk: a case study of wheat producers in Mashhad. Agricultural Economics Research, 2(8): 63-76. (Persian)
    12. Hardaker, J.B., Lien, G., Anderson, J.R. and Huirne, R.B. (2015). Coping with risk in agriculture: applied decision analysis. CABI.
    13. Just, R.E. and Pope, R.D. (1979). Production function estimation and related risk considerations. American Journal of Agricultural Economics, 61(2): 276-284.
    14. Kim, M.K. and Pang, A. (2009). Climate change impact on rice yield and production risk. Journal of Rural Development, 32(2): 17-29.
    15. Kumar, A., Sharma, P. and Ambrammal, S.K. (2015). Climatic effects on sugarcane productivity in India: a stochastic production function application. International Journal of Economics and Business Research, 10(2): 179-203.
    16. Ligeon, C., Jolly, C., Bencheva, N., Delikostadinov, S. and Puppala, N. (2008). Production risks in Bulgarian peanut production. Agricultural Economics Review, 9(1): 103.
    17. Ministry of Agriculture - Jahad (2015). Bank cost of crop production. Tehran: Center for Statistics and Information, Ministry of Agriculture – Jahad. (Persian)
    18. Mortazavi, S., Ghorbani, M., Boroujeni, P. and Alipour, A. (2012). Factors affecting the pomegranate production risk with emphasis on poverty (a case study of villages of Shahreza Central Region). Agricultural Economics Research, 4(15): 21-38. (Persian)
    19. Moshi, A. (2017). Farm technologies and production risk in the face of climate change in Tanzania. Huria: Journal of the Open University of Tanzania, 24(2): 1-18.
    20. Osaki, M. and Batalha, M.O. (2014). Optimization model of agricultural production system in grain farms under risk, in Sorriso, Brazil. Agricultural Systems, 127: 178-188.
    21. Poudel, M.P., Chen, S.E. and Huang, W.C. (2014). Climate influence on rice, maize and wheat yields and yield variability in Nepal. Journal of Agricultural Science and Technology, B, 4(1B): 38-48.
    22. Roll, K.H., Guttormsen, A.G. and Asche, F. (2006). Modelling production risk in mall scale subsistence agriculture. In: Contributed Paper Prepared for Presentation at the International Association of Agricultural Economists Conference, Gold Coast, Australia, August, pp. 12-18.
    23. Sarker, M.A.R., Alam, K. and Gow, J. (2017). Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. Renewable Agriculture and Food Systems, 1-9.
    24. Tiedemann, T. and Latacz‐Lohmann, U. (2013). Production risk and technical efficiency in organic and conventional agriculture– the case of arable farms in Germany. Journal of Agricultural Economics, 64(1): 73-96.
    25. Torkamani, J and Ghorbani, M. (1997). Influence of input use on production risk: an application of generalized stochastic production function. Iranian Journal of Agricultural Economics and Development Research, 28(2): 37-42. (Persian)
    26. Villano, R.A., O'Donnell, C.J. and Battese, G.E. (2005). An investigation of production risk, risk preferences and technical efficiency: evidence from rainfed lowland rice farms in the Philippines. Working Paper Series in Agricultural and Resource Economics, No. 2005-1, ISSN 1442 1909.