بررسی اثرگذاری مصرف نهاده‌ها بر تولید غلات منتخب در کشور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد گروه اقتصاد کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار گروه اقتصاد کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

4 استاد و مدیر دانشگاه ایالتی اوکلاهما، نورمن، ایالات متحدة آمریکا.

چکیده

با شناسایی اثر مصرف نهاده‌های مختلف بر تولید محصولات کشاورزی، اطلاعات درست برای تصمیم‌گیری در اختیار سیاست‌گذار قرار می‌گیرد. هدف مطالعه حاضر برآورد تابع تولید محصولات گندم آبی و دیم و برنج با استفاده از الگوی پانل سه‌بعدی فضایی (محصول، استان و زمان) بود. اطلاعات مورد نیاز در دوره زمانی 1385 تا 1396 برای سی استان کشور جمع‌آوری و تابع تولید ترانسلوگ، بر اساس معیارهای انتخاب تابع تولید، به‌عنوان تابع برتر برگزیده شد. با توجه به اثرات فضایی و انجام آزمون‌های تشخیصی، الگوی همبستگی فضایی به‌عنوان الگوی مطلوب ارزیابی شد. نتایج مطالعه نشان داد که کشش سطح زیر کشت، مصرف سم، تراکتور و کمباین نسبت به تولید گندم آبی، گندم دیم و برنج مثبت و کشش نیروی کار، مصرف بذر، کود و برق نسبت به تولید این محصولات منفی است؛ همچنین، کشش نهاده‌ها، در طول زمان، تغییر قابل توجه نداشته و روند اثرگذاری نهاده‌ها بر تولید این محصولات تقریباً ثابت بوده است. با توجه به مازاد نیروی کار در تولید، لازم است خروج نیروی کار از تولید در زیربخش غلات در دستور کار قرار گیرد. افزون بر این، سرمایه‏گذاری بیشتر در عوامل سرمایه ‌بر همچون کمباین و تراکتور در راستای افزایش تولید و دستیابی به اهداف خودکفایی غلات کشور توصیه می‏شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Input Consumption on Selected Grain Production in Iran

نویسندگان [English]

  • B. Fakari sardehae 1
  • N. Shahnoushi 2
  • H. Mohammadi 3
  • Sh. Rastegari Henneberry 4
1 PhD Student in Agricultural Economics, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Agricultural Economics, Ferdowsi University of Mashhad, Mashhad, Iran
3 Associate Professor, Department of Agricultural Economics, Ferdowsi University of Mashhad, Mashhad, Iran
4 Professor and President of the University of Oklahoma, Norman, Oklahoma State, USA
چکیده [English]

Identifying the impact of consumption of different inputs on agricultural production helps to provide the right information to the policymaker. This study aimed at estimating the production function of two basic products (irrigated and rainfed wheat, and rice) using the three-dimensional spatial panel pattern (product, province and time). The required information was collected for the 30 provinces of Iran in the period from 2006 to 2018; and according to the selection criteria of the production functions, the translog function was selected as the superior function. Due to spatial effects and diagnostic tests, the spatial correlation model was evaluated as the optimal model. The study results showed that the elasticity of cultivated area, consumption of pesticides, tractors and combine harvesters to the production of irrigated wheat, rainfed wheat and rice products was positive and the elasticity of labor, consumption of seeds and fertilizers to the production of these products was negative; in addition, the elasticity of production inputs did not change significantly over time, and the trend of impacts of the production inputs on the production of the studied products was almost constant. Due to the surplus of labor in the production of these three products, the withdrawal of labor from production in this sector should be on the agenda and more investment should be made in investment factors such as combine harvesters and tractors to increase production so that the country can achieve self- sufficiency.
 

کلیدواژه‌ها [English]

  • irrigated wheat
  • Rainfed wheat
  • rice
  • Production Function
  • Spatial Regression and 3D Panel
  1. Abdi Rokni, K., Abedi, S. and Kashiri Kolaei, F. (2019). Effect of optimization of chemical fertilizers consumption on optimal cropping pattern in the framework of positive mathematical programming (case study of Sari Goharbaran). Agricultural Economics Research, 11(42): 263-276. Available at

http://jae.miau.ac.ir/article_3493_37c391b3f2637340eb8c88e2142ca8cc.pdf. ((Persian))

  1. Abrha, B.K. (2015). Factors affecting agricultural production in Tigray region, northern Ethiopia. University of South Africa.
  2. Akbari, M. (2006). An introduction to production theory. Basirat Jornal, 37: 284-300. ((Persian)) با توجه به اهمیت این منبع، نام نشریه و دیگر مشخصات منبع بررسی شود
  3. Albers, H., Gornott, C. and Hüttel, S. (2017). How do inputs and weather drive wheat yield volatility? The example of Germany. Food Policy, 70: 50-61.
  4. Amirnejad, H. and Asadpour Kordi, M. (2017). Effects of climate change on wheat production in Iran. Agricultural Economics Research, 9(35): 163-182. Available at

http://jae.miau.ac.ir/article_2520_a2bcfd520f9181ece63f0f6d71d3a516.pdf. ((Persian))

  1. Anselin, L. (2013). Spatial econometrics: methods and models (Vol. 4). Springer Science and Business Media.
  2. Balazsi, L., Baltagi, B., Matyas, L. and Pus, D. (2016). Modelling multi-dimensional panel data: a random effects approach. Central European University, Department of Economics. Available at

http://paneldataconference2015.ceu.hu/Program/Laszlo-Balazsi.pdf.

  1. Baldwin, R. and Taglioni, D. (2006). Gravity for dummies and dummies for gravity equations. Working Paper 12516, National Bureau of Economic Research. Available at http://www.nber.org/papers/w12516.
  2. Ball, E.V., Wang, S.L., Nehring, R. and Mosheim, R. (2016). Productivity and economic growth in US agriculture: a new look. Applied Economic Perspectives and Policy, 38(1): 30-49.

10. Ball, R. and Pounder, L. (1996). "Efficient but Poor" revisited. Economic Development and Cultural Change, 44(4): 735-760.

11. Baltagi, B. (2008). Econometric analysis of panel data. New Jersey: John Wiley and Sons.

12. Baltagi, B.H., Feng, Q. and Kao, C. (2012). A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model. Journal of Econometrics, 170(1): 164-177.

13. Barrett, C.B., Sherlund, S.M. and Adesina, A.A. (2008). Shadow wages, allocative inefficiency, and labor supply in smallholder agriculture. Agricultural Economics, 38(1): 21-34.

14. Belotti, F., Hughes, G. and Mortari, A.P. (2017). Spatial panel-data models using Stata. The Stata Journal, 17(1): 139-180.

15. Bertoli, S. and Moraga, J.F.H. (2013). Multilateral resistance to migration. Journal of Development Economics, 102: 79-100.

16. Chalfant, J.A. (1984). Comparison of alternative functional forms with application to agricultural input data. American Journal of Agricultural Economics, 66(2): 216-220.

17. Duflo, E. (2006). Poor but rational? In: A.V. Banerjee et al. (2006) Understanding Poverty, Oxford Scholarship Online, pp. 367-378. DOI:10.1093/0195305191.003.0024

18. Egger, P. and Pfaffermayr, M. (2002). The proper econometric specification of the gravity equation: a three-way model with bilateral interaction effects. Empirical Economics, 28: 571-580. Available at https://link.springer.com/article/10.1007/s001810200146.

19. Elhorst, J.P. (2014). Dynamic spatial panels: models, methods and inferences. In: Spatial Econometrics: from Cross-Sectional Data to Spatial Panels (pp. 95-119). Springer-Verlag Berlin Heidelberg.

20. Esfandiari, M., Shahraki, J. and Karbasi, A. (2012). Study of efficiency and optimal inputs usage for rice production, case study: rice producers in Kamfirouz district, Fars province. Agricultural Economics, 6(3): 1-21. Available at

http://www.iranianjae.ir/article_9299_39907e66d0ccbbecc3ea7a8ce7de208b.pdf. ((Persian))

21. FAO (2019). FAO food balance sheets. Available at http://www.fao.org/faostat/en/#data/FBS.

22. Feali, S., Pezeshki-Rad, Gh, Sedighi, H., Shahbazi, E. and Ghoreishi, J. (2012). Structural changes in Iran’s agriculture: a perspective to 2025. Journal of Village and Development, 15(3): 21-39. (Persian)

23. Feder, G., Just, R.E. and Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: a survey. Economic Development and Cultural Change, 33(2): 255-298.

24. Gatrell, A.C. (1989). "Book reviews : Griffith, D.A. 1987: Spatial autocorrelation : a primer. Pennsylvania: Association of American Geographers. iv + 82 pp. US $6.00". Progress in Human Geography, 13(1): 144-145. Available at

https://journals.sagepub.com/doi/pdf/10.1177/030913258901300115.

25. Gilanpour, O. (2014). Investment analysis in Iran's agricultural sector: challenges, rules and regulations, requrments and solutions. Center for Economic Studies and Research, Tehran Chamber of Commerce, Industries, Mines and Agriculture, 340. (Persian)

26. Golriz, Z., Eshraghi, F. and Keramatzadeh, A. (2017). Estimating the economic value of water in wheat production in Gorgan County. Iranian Journal of Water Research in Agriculture (Soil and Water Sciences), 30(4). Available at

https://www.sid.ir/en/journal/ViewPaper.aspx?ID=532162. (Persian)

27. Gong, B. (2018). Agricultural reforms and production in China: changes in provincial production function and productivity in 1978–2015. Journal of Development Economics, 132: 18-31.

28. Griffin, R.C., Montgomery, J.M. and Rister, M.E. (1987). Selecting functional form in production function analysis. Western Journal of Agricultural Economics, 12(2): 216-227.

29. Gunnella, V., Mastromarco, C., Serlenga, L. and Shin, Y. (2015). The Euro effects on intra-EU trade flows and balance: evidence from the cross sectionally dependent panel gravity models. Available at http://paneldataconference2015.ceu.hu/Program/Yongcheol-Shin.pdf.

30. Heady, E.O. (1946). Production functions from a random sample of farms. Journal of Farm Economics, 28(4): 989-1004.

31. Kiani Ghalehsard, S., Shahraki, J., Akbari, A. and Sardar Shahraki, A. (2019). Investigating the effects of climate change on food security of Iran. Journal of Natural Environmental Hazards, 8(22): 19-40. Available at http://jneh.usb.ac.ir/article_3934_a84a958032aaee8d00d8508e55254320.pdf. doi:10.22111/jneh.2018.24170.1380. (Persian)

32. Kordouni, F., Jami al-Ahmadi, M. and Bakhshi, M.R. (2018). Econometric analysis of energy use in cereal production of Iran (case study: wheat, barley, corn, rice). Agricultural Economics Research, 10(37): 133-148. Available at

http://jae.miau.ac.ir/article_2735_eb4da3d02e156400dd5e3f2cf1adc383.pdf. (Persian)

33. Lagakos, D. and Waugh, M.E. (2013). Selection, agriculture, and cross-country productivity differences. American Economic Review, 103(2): 948-980.

34. IPI (2010). Law on increasing productivity of agriculture and natural resources. Tehran: Islamic Parliament ‌of Iran(IPI). (Persian)

35. Levin, A., Lin, C.F. and Chu, C.S.J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of Econometrics, 108(1): 1-24.

36. Lloyd, C. (2010). Spatial data analysis: an introduction for GIS users. Oxford University Press.

37. Mátyás, L. and Balázsi, L. (2013). The estimation of multi-dimensional fixed effects panel data models. Econometric Reviews, 37(3): 212-227. Available at

https://www.tandfonline.com/doi/abs/10.1080/07474938.2015.1032164?journalCode=lecr20.

38. Mundlak, Y. and Butzer, R. (1997). The determinants of agricultural production: a cross-country analysis. The World Bank.

39. OCNI (2013). Food basket for Iranian society. Tehran: Office of Community Nutrition Improvement (OCNI), Ministry of Health and Medical Education. School of Health, Tehran University of Medical Sciences, Institute of Nutrition and Food Technology Research, Shahid Beheshti University of Medical Sciences. (Persian)

40. Ohadi, N. and Kurkinejad, J. (2014). Economic pricing of water in pistachio production of Sirjan. International Journal of Agricultural Management and Development, 4(4): 247-252. (Persian)

41. OJIRI (2017). Law of the sixth five year economic, social and cultural development plan of the Islamic Republic of Iran. Tehran: The Official Journal of the Islamic Republic of Iran (OJIRI). (Persian)

42. Petrick, M. and Kloss, M. (2013). Identifying factor productivity from micro-data: the case of eu agriculture. Factor Markets Working Paper 34. Brussels: CEPS. Available at https://www.choicesmagazine.org/choices-magazine/theme-articles/the-eurozone-crisis-and-its-implications-for-agriculture-in-selected-regions-of-the-world/exposure-of-eu-farmers-to-the-financial-crisis.

43. Salami, H. and Mohtashami, T. (2014). The projection model of Iran’s crop production in 2025. Iranian Journal of Agricultural Economics and Development Research, 45(4): 585-599. Available at https://ijaedr.ut.ac.ir/article_53834_db41472a0af30b548dcb47d57906e543.pdf. doi:10.22059/ijaedr.2014.53834. ((Persian))

44. Schultz, T.W. (1964). Transforming traditional agriculture. New Haven: Yale University Press.

45. SCI (2019). A perspective of Iran's population in 2050. Tehran: Statistical Center of Iran (SCI), Bureau of Population. Available at https://www.amar.org.ir. (Persian)

46. Tintner, G. (1944). A note on the derivation of production functions from farm records. Econometrica, Journal of the Econometric Society, 12(1): 26-34.

47. Varian, H.R. (1992). Microeconomics analysis (Third ed.). New York: W.W. Norton and Company, Inc.

48. Verma, S., Gupta, Sh. and Sen, P. (2020). Does climate change make foodgrain yields more unpredictable? Evidence from India. CESifo Working Paper Series 8161, SSRN. Available at https://ssrn.com/abstract=3555588.

49. Welch, F. (1970). Education in production. Journal of Political Economy, 78(1): 35-59.