تدوین الگوی درونی ابعاد انعطاف‌پذیری تولید در صنایع غذایی بر اساس روش مدل‏سازی ساختاری- تفسیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 استاد گروه مدیریت، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

3 استاد گروه مدیریت، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

بنا به توافق عمومی در ادبیات موضوع، «انعطاف ­پذیری» تولید مفهومی چندبعدی است، که این ابعاد می­توانند روابط درونی با یکدیگر داشته باشند و منجر به انعطاف ­پذیری بیشتر تولید شوند. بر همین اساس، مطالعه حاضر، با هدف تدوین الگوی درونی ابعاد انعطاف­ پذیری تولید در صنایع غذایی بر اساس روش مدل‏سازی ساختاری- تفسیری (ISM)، از نظر روش، از نوع تحقیقات توصیفی- مدل‏سازی و از منظر هدف، یک تحقیق کابردی بوده و در آن، ساخت و تدوین الگوی درونی ابعاد انعطاف‏ پذیری تولید با بهره‏ گیری از نظرات بیست تن از خبرگان آشنا به موضوع انعطاف­ پذیری تولید صورت گرفت. داده ­ها در این بخش بر اساس پرسشنامه ویژه روش مدل‏سازی ساختاری- تفسیری جمع ­آوری و برای تحلیل داده ­ها، از روش مدل‏سازی ساختاری- تفسیری استفاده شد. یافته­ های تحقیق نشان داد که الگوی درونی ایجادشده برای ابعاد انعطاف­ پذیری تولید، با استفاده از روش مدل‏سازی ساختاری- تفسیری، به درک تعامل بین ابعاد مختلف مؤثر بر انعطاف‏ پذیری و پیامدهای مدیریتی این ابعاد کمک می­کند؛ در الگوی درونی ایجادشده از طریق مدل‏سازی ساختاری- تفسیری،  «انعطاف ‏پذیری فرآیند» و «انعطاف ‏پذیری نیروی کار» تأثیرگذارترین (هدایت ‏کننده ­ترین) ابعاد انعطاف ‏پذیری و همچنین، «انعطاف ‏پذیری محصول» تأثیرپذیرترین (وابسته­ ترین) بعد انعطاف­ پذیری در صنایع غذایی تلقی می‏شوند؛ افزون بر این، افزایش کارآیی در عوامل تأثیرگذار به بهبود عوامل تأثیرپذیر و در نتیجه، به انعطاف پذیری بیشتر در صنایع غذایی می­انجامد. 

کلیدواژه‌ها


عنوان مقاله [English]

An Internal Model of Manufacturing Flexibility Dimensions in Food Industry Based on Interpretive Structural Modeling (ISM)

نویسندگان [English]

  • ,Y. Shamsi 1
  • H. Taghizadeh 2
  • S. Iranzadeh 3
1 PhD Student of the Department of management , tabriz Branch, Islamic Azad University,Tabriz - iran
2 Professor, Department of Management, Islamic Azad University, Tabriz Branch, Tabriz, Iran
3 Department of management , tabriz Branch, Islamic Azad University,Tabriz - iran
چکیده [English]

In the literature on flexibility, there is a consensus that manufacturing flexibility is a multidimensional concept with internal relations between its dimensions that can lead to increased manufacturing flexibility. The purpose of this study was to develop an internal model of manufacturing flexibility dimensions in the food industry based on interpretive structural modeling(ISM). This applied study was conducted in a descriptive modeling method. The model was developed using the reviews of 20 experts on manufacturing flexibility. The data were collected through a questionnaire for the interpretive structural modeling and the results were analyzed through the same modeling. The study findings showed that the developed internal model of manufacturing flexibility dimensions would help to understand the interaction between different dimensions affecting the flexibility and the consequences of their management. According to the results, process flexibility and labor flexibility were the most influential (leading) dimensions and product flexibility was the most influenced (dependent) dimension in the food industry. In addition, enhancing the efficiency of influencing factors might be suggested to improve the influenced factors and led to an increased flexibility in the food industries.

کلیدواژه‌ها [English]

  • Manufacturing Flexibility
  • Interpretive Structural Modeling (ISM)
  • Food Industries
  1. Accorsi, R., Tufano, A., Gallo, A., Galizia, F.G., Cocchi, G., Ronzoni, M., ... and Manzini, R. (2019). An application of collaborative robots in a food production facility. Procedia Manufacturing, 38: 341-348.
  2. Alfnes, E., Røstad, C.C. and Strandhagen, J.O. (2000). Flexibility requirements in the food industry and how to meet them. The Fourth International Conference on Chain Management in Agribusiness and the Food Industries. Wageningne, The Netherlands.
  3. Beach, R., Muhlemann, A.P., Price, D.H., Paterson, A. and Sharp, J.A. (2000). A review of manufacturing flexibility. European Journal of Operational Research, 122(1): 41-57.
  4. Bech, S., Brunoe, T.D. and Larsen, J.K. (2018). Changeability of the manufacturing systems in the food industry: a case study. Procedia CIRP, 72: 641-646.
  5. Brettel, M., Klein, M. and Friederichsen, N. (2016). The relevance of manufacturing flexibility in the context of Industrie 4.0. Procedia Cirp, 41(1): 105-110.
  6. Browne, J., Dubois, D., Rathmill, K., Sethi, S.P. and Stecke, K.E. (1984). Classification of flexible manufacturing systems. The FMS Magazine, 2(2): 114-117.
  7. Costa, L.B.M., Godinho Filho, M., Fredendall, L.D. and Paredes, F.J.G. (2018). Lean, six sigma and lean six sigma in the food industry: a systematic literature review. Trends in Food Science and Technology, 82: 122-133.
  8. Dora, M., Van Goubergen, D., Kumar, M., Molnar, A. and Gellynck, X. (2014). Application of lean practices in small and medium-sized food enterprises. British Food Journal, 116(1): 125-141.
  9. D'Souza, D.E. and Williams, F.P. (2000). Toward a taxonomy of manufacturing flexibility dimensions. Journal of Operations Management, 18(5): 577-593.
  10. Fitzgerald, G., Barad, M., Papazafeiropoulou, A. and Alaa, G. (2009). A framework for analyzing flexibility of generic objects. International Journal of Production Economics, 122(1): 329-339.
  11. Fogliatto, F.S., Da Silveira, G.J. and Borenstein, D. (2012). The mass customization decade: an updated review of the literature. International Journal of Production Economics, 138(1): 14-25.
  12. Gerwin, D. (1993). Manufacturing flexibility: a strategic perspective. Management Science, 39(4): 395-410.
  13. Gothwal, S. and Raj, T. (2017). Analyzing the factors affecting the flexibility in FMS using weighted interpretive structural modeling (WISM) approach. International Journal of System Assurance Engineering and Management, 8(2): 408-422.
  14. Jain, A., Jain, P.K., Chan, F.T. and Singh, S. (2013). A review on manufacturing flexibility. International Journal of Production Research, 51(19): 5946-5970.
  15. Jain, R. and Lyons, A.C. (2009). The implementation of lean manufacturing in the UK food and drink industry. International Journal of Services and Operations Management, 5(4): 548-573.
  16. Kapitanov, A.V. (2017). Manufacturing system flexibility control. Procedia Engineering, 206: 1470-1475.
  17. Khan, J., Rehman, W. and Tahir, M. (2009). Flexibility analysis of a food processing industry. Nucleus, 46(3): 311-320.
  18. Koste, L.L. and Malhotra, M.K. (1999). A theoretical framework for analyzing the dimensions of manufacturing flexibility. Journal of Operations Management, 18(1): 75-93.
  19. Kumar, S., Goyal, A. andSinghal, A. (2017). Manufacturing flexibility and its effect on system performance. Jordan Journal of Mechanical and Industrial Engineering, 11(2): 105-112.
  20. Mahalik, N.P. and Nambiar, A.N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science and Technology, 21(3): 117-128.
  21. Oberoi, J.S., Khamba, J.S., and Kiran, R. (2008). An empirical examination of advanced manufacturing technology and sourcing practices in developing manufacturing flexibilities. International Journal of Services and Operations Management, 4(6): 652-671.
  22. Oke, A. (2013). Linking manufacturing flexibility to innovation performance in manufacturing plants. International Journal of Production Economics, 143(2): 242-247.
  23. Pandey, R., Sharma, N. and Tomar, A.S. (2016). Performance evaluation of flexible manufacturing system (FMS) in manufacturing industries. Imperial Journal of Interdisciplinary Research, 2(3): 176-180.
  24. Panwar, A., Nepal, B.P., Jain, R. and Rathore, A.P.S. (2015). On the adoption of lean manufacturing principles in process industries. Production Planning and Control, 26(7): 564-587.
  25. Pauls-Worm, K.G., Hendrix, E.M., Alcoba, A.G. and Haijema, R. (2016). Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint. International Journal of Production Economics, 181: 238-246.
  26. Pinedo, M.L. (2016). Scheduling: theory, algorithms, and systems. The fifth Edition. Springer International Publishing AG Switzerland.
  27. Sethi, A.K. and Sethi, S.P. (1990). Flexibility in manufacturing: a survey. International Journal of Flexible Manufacturing Systems, 2(4): 289-328.
  28. Siddiquie, R.Y., Khan, Z.A. and Siddiquee, A.N. (2017). Prioritizing decision criteria of flexible manufacturing systems using fuzzy TOPSIS. Journal of Manufacturing Technology Management, 28(7): 913-927.
  29. Slack, N. (1983). Flexibility as a manufacturing objective. International Journal of Operations and Production Management, 3(3): 4-13.
  30. Slack, N. (1987). The flexibility of manufacturing systems. International Journal of Operations and Production Management, 7(4): 35-45.
  31. Urtasun-Alonso, A., Larraza-Kintana, M., García-Olaverri, C. and Huerta-Arribas, E. (2014). Manufacturing flexibility and advanced human resources management practices. Production Planning and Control, The Management of Operations, 25(4): 303-317.
  32. Van Wezel, W., Van Donk, D.P. and Gaalman, G. (2006). The planning flexibility bottleneck in food processing industries. Journal of Operations Management, 24(3): 287-300.