توسعه و کاربرد مدل محدودیت سازش هم‏زمان برای تخصیص بهینه منابع آب بین بخش‌های اقتصادی با تأکید بر بخش کشاورزی: مطالعه موردی استان یزد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

2 نویسنده مسئول و استاد گروه علوم اقتصادی، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران.

3 دانشیار گروه علوم اقتصادی، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

در مطالعه حاضر، در راستای تخصیص بهینه منابع محدود آب بین بخش­ های اقتصادی استان یزد با تاکید بر بخش کشاورزی، از روش محدودیت سازش هم‏زمان استفاده شد و نوآوری آن در مبانی این روش، توسعه مدل با یک محدودیت اضافی (قید اشتغال) بود. مطابق نتایج به ‏دست ‏آمده، بر مبنای آب تخصیص‏ یافته به بخش ­ها توسط مدل، در سال 1400 نسبت به سال مبنا، رشد سالانه 2/5 درصدی ارزش اقتصادی (به قیمت ثابت) حاصل می­شود. نسبت تحقق اشتغال به هدف مورد انتظار نیز حدود 8/98 درصد خواهد بود. با توجه به کاهش آب قابل دسترس که عمده فشار آن نیز متوجه بخش کشاورزی خواهد بود، کارآمدی مدل در توجه مطلوب و هم‏زمان به اهداف چندگانه سبب می ­شود که تخصیص آب به ‏گونه ­ای باشد که حتی بخش کشاورزی نیز با رشد سالانه 4/0 درصدی ارزش اقتصادی همراه باشد. بر مبنای نتایج مطالعه حاضر، روش محدودیت سازش هم‏زمان از توانایی بالا در سازش بین اهداف و تخصیص بهینه منابع آبی در راستای دستیابی به اهداف در تطابق با واقعیت ­ها برخوردار است. از این‏رو، مدل پیشنهادی تحقیق حاضر می­تواند در تدوین برنامه­ های بخش آب مد نظر قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Simultaneous Compromise Constraint model for optimal allocation of water resources between economic sectors with emphasis on agriculture: A Case Study of Iran’s Yazd Province

نویسندگان [English]

  • M. Dehghanizadeh 1
  • S. Bakhtiari 2
  • S Daei-Karimzadeh 3
1 PhD Student in Economics, Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Professor, Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
3 Associate Professor, Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

In this study, a Simultaneous Compromise Constraint method was used for optimal allocation of limited water resources between different economic sectors of Yazd province by emphasis on agricultural sector. The novelty of the present study is the renovation of the aforementioned method by addition an extra constraint (employment constraint). The results of the study indicate that, based on the water allocated to the different sectors, 5.2 percent annual growth (at a fixed price) will be achieved in the year 2020, in comparison to the base year. The ratio of employment to the expected objective will be about 98.8%. Due to reduction of available water, the main pressure will be on the agricultural sector, the efficiency of the model in the optimal attention to simultaneous multiple goals, causes water allocation to be such that even the agricultural sector has an annual economic growth of 0.4. The results indicate that, the method has a high ability to compromise between goals and optimal allocation of water resources in order to achieve the goals in accordance with the facts. Therefore, the proposed model could be considered as a suitable method for providing water sector plans.

کلیدواژه‌ها [English]

  • Water Restriction
  • optimization
  • Satisfaction Level
  • Economic Return
  • Weighting Technique
  • Compromise Constraint
  1. Adulbhan, P. and Tabucanon, M.T. (1977). Bicriterion linear programming. Computers and Operations Research, 4(2): 147-153.
  2. Ahmad, I., and Tang, D. (2016). Multi-objective linear programming for optimal water allocation based on satisfaction and economic criterion. Arab J. Sci. Eng., 41: 1421-1433.
  3. Ahmad, I., Zhang, F., Liu, J., Anjum, M.N., and Zaman, M. (2018). A linear bi-level multi-objective program for optimal allocation of water resources. PLOS ONE, 13(2): e0192294, 13(2).
  4. Akbari, N., Niksokhan, M. and Ardestani, M. (2014). Optimization of water allocation using cooperative game theory, case study: Zayandehroud Basin. Journal of Environmental Studies, 40(4): 875-889. (Persian)
  5. Babel, M.S., Gupta, A.D. and Nayak, D.K. (2005). A model for optimal allocation of water to competing demands. Water Resouce Management, 19: 693-712.
  6. Divakar, L., Babel, M.S., Perret, S.R. and Gupta, A.D. (2013). Optimal water allocation based on satisfaction and economic benefits. International Journal of Water, 7: 363-381.
  7. Freire-González, J., Decker, C.A. and Hall, J.W. (2018). A linear programming approach to water allocation during a drought. Water, 363(10).
  8. Habibi Davijani, M., Banihabib, M.E., Najafzadeh Anvar, A. and Hashemi, S.R. (2016). Multi-objective optimization model for the allocation of water resources in arid regions based on the maximization of socioeconomic efficiency. Water Resource Management, 30(3): 927-946.
  9. Kaviani Rad, M. (2016). Challenges of hydropolitics and water security in Iran. National Security Observer Monthly, 56: 23-28. (Persian)
  10. Khoshakhlagh, R., and Dehghanizadeh, M. (2006). Investigating the need of economic sectors of Yazd province to the labor force using the data-output table. Knowledge and Development, 18: 127-153. (Persian)
  11. Mubakoa, S., Lahirib, S., and Lantc, C. (2013). Input-output analysis of virtual water transfers: case study of California and Illinois. Ecological Economics, 93: 230-238.
  12. Pourasghar, F., and Ebrahimi, M. (2018). Investigating the effects of water regulation programs in neighboring countries on common border basins on Iran. Tehran: Plan and Budget Organization, Development and Foresight Research Center. (Persian)
  13. RWC (2018). Adaptation program with water scarcity in Yazd province. Yazd: Regional Water Company (RWC) of Yazd. (Persian)
  14. Shahraki, J. and Mohseni, S. (2013). Compromise multi criteria decision making application in water resources optimal allocation: a case study of Yazd city. Irrigation and Water Engineering, 3(4): 107-117. (Persian)
  15. SCI (2020a). Iran's national accounts (base year = 2011), for 2011-2015. Statistical Center of Iran (SCI).Available at https://www.amar.org.ir. Retrieved at 05 April, 2020. (Persian)
  16. SCI (2020b). Iran's regional accounts, for 2011-2015. Statistical Center of Iran (SCI).Available at https://www.amar.org.ir. Retrieved at 12 April, 2020. (Persian)
  17. UN-Water (2018). Nature-based solutions for water. The United Nations World Water Development Report 2018. Paris: UNESCO.
  18. UNESCO, U.-W. (2020). Water and climate change. United Nations World Water Development Report 2020. Paris: UNESCO.
  19. Xu, M., Li, C., Wang, X., Cai, Y. and Yue, W. (2018). Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian city, China. Journal of Cleaner Production, 176: 1283-1291.