بررسی اثرات توزیعی افزایش قیمت آب، غذا و انرژی در نظام اقتصادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 نویسنده مسئول و دانشیار گروه اقتصاد کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار گروه اقتصاد کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

4 دکتری اقتصاد کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

آب، غذا و انرژی (یعنی، سوخت‌های فسیلی و برق) سه عنصر اساسی در نظام اقتصادی به‏ شمار می‏روند که در گزارش‏ های بین‌المللی، بر لزوم توجه به روابط میان آنها در راستای دستیابی به توسعه پایدار تأکید شده است. با توجه به روندهای مصرفی و تکانه‏ های گوناگون تأثیرگذار بر پیوند آب، غذا و انرژی در ایران، هدف اصلی مطالعه حاضر ردیابی اثرات قیمتی قابل انتقال از سوی هر کدام از اجزای پیوند به یکدیگر در مواجهه با تکانه‌های برون‏ زای قیمتی بود. برای دستیابی به الگوهای انتقال قیمت، از ماتریس حسابداری اجتماعی (SAM) استفاده شد. در این راستا،‏ از رهیافت تجزیه ضرایب فزاینده، با توجه به قابلیت آن در نشان دادن اثرت توزیعی تکانه قیمتی در خلال نظام اقتصادی مطابق هدف مطالعه حاضر، بهره گرفته شد . همچنین، محاسبه ضرایب فنی- اقتصادی پیوند آب، غذا و انرژی با در نظر گرفتن تعاملات با سایر بخش‌های اقتصادی صورت گرفت. نتایج نشان داد که نه‏ تنها ضرایب قیمتی در حالت کلی متفاوت‏ اند، بلکه در حالت تجزیه‏ شده نیز بیانگر انتقال قیمت به‏ صورت غیریکسان است؛ و از آنجا که غذا و انرژی دارای زیربخش‌های مختلفی هستند، بر هم‏ کنش‌های قیمتی آنها نیز کاملاً متفاوت است؛ به دیگر سخن، اثرات قیمتی زیربخش‌های انرژی بر زیر بخش‌های غذا تفاوت‌های قابل توجه دارند. بنابراین، چنانچه سیاست‌گذاری اقتصادی بدون توجه به ضرایب قیمتی صورت گیرد، اثرات غیرمستقیم در خلال نظام اقتصادی به تبعات منفی می‌انجامد. از این رو، پیشنهاد می‌شود که پیش از اتخاذ سیاست اقتصادی، نتایج انتقال قیمت به ‏صورت جداول راهنما مورد توجه قرار گیرد و با توجه به تبعات احتمالی، سیاست‌گذاری مناسب صورت پذیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Distributional Impacts of Rising Water, Food and Energy Prices on Economic System

نویسندگان [English]

  • M. Kiani Deh Kiani 1
  • S. Khalilian 2
  • H. Najafi Alamdarlo 3
  • H. Mosavi 3
  • M. H. Vakilpour 4
1 PhD Student in Agricultural Economics, Tarbiat Modares University, Tehran, Iran
2 Corresponding Author and Associate Professor, Department of Agricultural Economics, Tarbiat Modares University, Tehran, Iran
3 Associate Professor, Department of Agricultural Economics, Tarbiat Modares University, Tehran, Iran
4 PHD in Agricultural Economics, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Water, food and energy (i.e. fossil fuels and electricity) are the three basic elements in the economic system that international reports emphasize the need for attention to the relationship between them in order to achieve sustainable development. Considering the various consumption trends and shocks affecting the connection of water, food and energy in Iran, this study aimed mainly at tracking the price effects that can be transmitted by each of the components of the connection to each other in the face of exogenous price shocks. To obtain price transfer patterns, the Social Accounting Matrix (SAM) was used. In this regard, the incremental coefficients analysis approach was used, considering its ability to show the distributional effect of price shock through the economic system according to the purpose of the present study. Also, the technical-economic coefficients of water, food and energy connection were calculated by considering interactions with other economic sectors. The results showed that not only the price coefficients were different in the general state, but also in the analyzed state, it indicated the transfer of the price in an unequal way; and since food and energy had different subsectors, their price interactions were also completely different; in other words, the price effects of energy sub-sectors on food sub-sectors had significant differences. Therefore, if economic policy is made without paying attention to price coefficients, indirect effects in the economic system will lead to negative consequences. So, it is suggested that before adopting the economic policy, the results of the price transfer should be taken into consideration in the form of guide tables and appropriate policy should be made according to the possible consequences.

کلیدواژه‌ها [English]

  • Social Accounting Matrix
  • Multiplier Decomposition
  • Economy Structure
  1. Abouei Mehrizi, A., Faridzad, A. and Baloonejad, R. (2018). The distributional effects of increasing the price of energy carriers in Iran: comparison of input-output price models. Economic Growth and Development Research, 8(30): 167-187. (Persian)
  2. Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P., Müller, A., Komor, P., Tol, R. and Yumkella, K. (2011). Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy, 39(12): 7896-7906. DOI: 10.1016/j.enpol.2011.09.039.
  3. Dargin, J., Berk, A. and Mostafavi, A. (2020). Assessment of household-level food-energy-water nexus vulnerability during disasters. Sustainable Cities and Society, 62: 102366.
  4. El Gafy, I., Grigg, N. and Reagan, W. (2017). Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. Water International, 42(4): 495-503.
  5. FAO (2011). The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London. Available at https://www.fao.org/3/i1688e/i1688e01.pdf.
  6. Farajzadeh, Z. and Bakhshoodeh, M. (2015). Economic and environmental analyses of Iranian energy subsidy reform using Computable General Equilibrium (CGE) model. Energy for Sustainable Development, 27: 147-154.
  7. Finley, J.W. and Seiber, J.N. (2014). The nexus of food, energy, and water. Journal of Agricultural and Food Chemistry, 62(27): 6255-6262.
  8. Flammini, A., Puri, M., Pluschke, L. and Dubois, O. (2014). Walking the nexus talk: assessing the water-energy-food nexus in the context of the sustainable energy for all initiative. Rome: Food and Agriculture Organization (FAO).
  9. Fulton, J. and Cooley, H. (2015). The water footprint of California’s energy system, 1990-2012. Environmental Science and Technology, 49(6): 3314-3321.
  10. Hoff, H. (2011). Understanding the nexus. Background Paper for the Bonn2011 Nexus Conference: The Water, Energy and Food Security Nexus. Stockholm Environment Institute, Stockholm.
  11. IWRMC (2017). Water consumption among agriculture, industry and drinking sectors (2002-2016). Tehran: Iran Water Resources Management Company (IWRMC). Available at http://www.wem.ir. (Persian)
  12. Kucukvar, M., Cansev, B., Egilmez, G., Onat, N.C. and Samadi, H. (2016). Energy-climate-manufacturing nexus: new insights from the regional and global supply chains of manufacturing industries. Applied Energy, 184(C): 889-904. DOI: 1016/j.apenergy.2016.03.068.
  13. Llop, M. (2018). Measuring the influence of energy prices in the price formation mechanism. Energy Policy, 117: 39-48.
  14. Miller, R.E. and Blair, P.D. (2009). Input-output analysis: foundations and extensions. Cambridge university Press.
  15. MOE (2017). Energy balance sheet of 2017. Tehran: Ministry of Energy (MOE), Department of Electricity and Energy Affairs, Bureau of Planning and Macroeconomics of Electricity and Energy. Available at https://isn.moe.gov.ir/getattachment/3740212e-5dec-4e42-801a-3ca01772ae2a/ ترازنامه-انرژی-سال-1396. (Persian)
  16. Moghimi feyzabadi, M. and Shahnoushi, N. (2012). Eliminating the subsidy on fossil fuels and the effects on production, cost and price indices in Khorasan-Razavi province. The Economic Research, 12(3): 1-23. (Persian)
  17. Nematollahi, Z., Shahnoushi, N., Javanbakht, O. and Daneshvar Kakhki, M. (2015). Assessment of results of the implementation of subsidies targeted on production activities. Economic Growth and Development Research, 5(19): 11-24. (Persian)
  18. Nielsen, T., Schunemann, F., McNulty, E., Zeller, M., Nkonya, E.M. … Queface, A. and Mapemba, L. (2015). The food-energy-water security nexus: definitions, policies, and methods in an application to Malawi and Mozambique. IFPRI Discussion Paper 1480. Washington, D.C.: International Food Policy Research Institute (IFPRI). Available at http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/129808.
  19. Owen, A., Scott, K. and Barrett, J. (2018). Identifying critical supply chains and final products: an input-output approach to exploring the energy-water-food nexus. Applied Energy, 210: 632-642.
  20. Piraee, K. and Akbary Moghaddam, B. (2005). The effect of subsidy reduction in agriculture sector and the changes in labor tax on sectoral production and the revenues of urban and rural household in Iran. Iranian Economic Research7(22): 1-30. (Persian)
  21. Pyatt, G. and Round, J.I. (1998). Accounting and fixed price multipliers in a Social Accounting Matrix framework. International Library of Critical Writings in Economics, 92: 407-430.
  22. Roland-Holst, D.W. and Sancho, F. (1995). Modeling prices in a SAM structure. The Review of Economics and Statistics, 77(2): 361-371.
  23. Sadeghi, H., Eslami Andargoly, M. and Ghanbari, A. (2014). The effects of cash transfers of electrical energy subsidies on the price index using the Computable General Equilibrium (CGE) model. The Economic Research, 13(4): 209-237. (Persian)
  24. Shahraki, J., Hosseini, S.M. and Khazaee, S. (2017). The effects of agricultural water subsidy reform on agricultural sector of Iran: application of computable general equilibrium model. Agricultural Economics Research, 8(32): 61-78. (Persian)
  25. Sims, R.E. (2011). "Energy-smart" food for people and climate: issue paper. Rome: Food and Agriculture Organization of the United Nations. Available at https://www.fao.org/3/i2454e/i2454e.pdf.
  26. WEF (2011). Global Risks 2011 Sixth Edition: an initiative of the risk response network. World Economic Forum (WEF).
  27. Zhou, Q., Deng, X. and Wu, F. (2017). Impacts of water scarcity on socio-economic development: a case study of Gaotai County, China. Physics and Chemistry of the Earth, Parts A/B/C, 101: 204-213.
  28. Zilberman, D., Sproul, T., Rajagopal, D., Sexton, S. and Hellegers, P. (2008). Rising energy prices and the economics of water in agriculture. Water Policy, 10(S1): 11-21.